
GUIDELINES FOR
PLAYSTATION PAL

TITLES

DESIGNING PLAYSTATION GAMES FOR

NTSC AND PAL TERRITORIES

Version 2.1
19 June, 1996

S O N Y C O M P U T E R E N T E R T A I N M E N T E U R O P E

Confidential Information of Sony

This Document contains confidential and restricted information and is covered by the terms of your Non-
Disclosure Agreement.

All information contained herein is subject to change without notice. Sony Computer Entertainment Europe
accepts no responsibility for any inadvertent errors, omissions or misprints contained in this document.

This Guide is for information purposes only. Its contents do not constitute any change to contractual
arrangements between SCEE and individual Developers or to SCEE's Specifications & Procedures manual.

DOCUMENT HISTORY

Version 1.0 mid-1995 (Allan J. Murphy) Initially called “Guidelines for PlayStation PAL
Conversions”.

Version 2.0 June-1996 (Various) Renamed and updated to reflect the new “Global
Technical Requirements”

Version 2.1 1-July-1996 (Paul Holman)Updated following internal review.

2

GUIDELINES FOR PAL TITLES

INDEX

DOCUMENT HISTORY 1

INDEX 2

INTRODUCTION 3

DIFFERENCES BETWEEN PAL AND NTSC 3

OVERVIEW OF TECHNICAL ISSUES 5

LIBRARIES AND HARDWARE 6

PAL HARDWARE SUPPORT 6
PAL SOFTWARE LIBRARY SUPPORT 6

RENDERED SEQUENCES 7

FRAME RATE CHANGE 7
INTERLEAVING XA AUDIO 8

MUSIC AND SOUND EFFECTS 9

XA AUDIO 9
DA AUDIO 9
SPU AUDIO & SEQ SEQUENCES 9

GRAPHICS & VRAM ALLOCATION 11

ALTERNATE GRAPHICS MODES 11
WRITING CODE THAT SUPPORTS BOTH 240 NTSC AND 256 HIGH PAL DISPLAYS 12
VRAM IMPACT & SUGGESTED OPTIMISATIONS 13
OVERSCAN AND SAFE AREAS 14

GAME MECHANICS AND MOTION CAPTURE 16

GAME MECHANICS 16
MOTION CAPTURE DATA 16

SUMMARY 17

3

GUIDELINES FOR PAL TITLES

G U I D E L I N E S F O R
P L A Y S T A T I O N P A L T I T L E S
DESIGNING PLAYSTATION GAMES FOR NTSC AND PAL

TERRITORIES

INTRODUCTION

This document attempts to describe some of the issues you will need to face if you are
designing a PlayStation product to be published in the European territory in addition to
those of Japan and America.

The most significant difference between the PlayStation consumer machines in these
three territories is that they have to deal with different display types - the US and Japan use
the NTSC standard for TV displays, and in Europe the most common display type is PAL.

As such, there are some implications which you may not have considered, especially in
the way that the PlayStation deals with various facets of game production. Some of these
may be obvious, some may not.

DIFFERENCES BETWEEN PAL AND NTSC

The main differences between PAL and NTSC displays are:

Frame Rate

NTSC displays run at 60 Hertz, i.e. they refresh the screen 60 times per second. PAL
screens run at 50 Hertz, i.e. they refresh the screen 50 times per second.

A standard game programming technique is to use an interrupt called the vertical blank
interrupt to drive game logic. This interrupt occurs when the electron gun inside the TV
starts its return from the bottom of the picture to the top of the picture to start refreshing
the display again. Obviously, if your game uses this interrupt to trigger game logic, you have
to consider the implications of this interrupt happening 50 times a second, not 60 times a
second.

Number of Raster lines on Screen

An NTSC display is 525 raster lines high, whereas the PAL screen is 625 raster lines
high.

The direct implication for PlayStation game products is that your NTSC title probably
does not draw a tall enough display to fill a PAL TV screen. For example, a common

4

GUIDELINES FOR PAL TITLES

resolution to run an NTSC PlayStation game is 320 pixels wide by 240 pixels high. On an
NTSC TV, 240 pixels high is enough to fill the screen. On a PAL TV, 240 high is not tall
enough to fill the screen; 256 pixels high is about right. This means that you may have to
make some changes to the way your game draws its display, and find some mechanism for
filling the extra space. There are various ways to do this.

5

GUIDELINES FOR PAL TITLES

OVERVIEW OF TECHNICAL ISSUES

There are five areas of concern in designing for converting a game to PAL. These issues
are due both to the difference in the display technologies, and also to the PlayStation the
libraries used to drive it.

Libraries and Hardware

First, you need to know how to develop a PAL version of your product - choosing the
hardware from SCEE, using the PlayStation libraries for PAL operation.

Rendered Sequences

What do you need to do to create full screen rendered sequences for PAL mode ?

Music and Sound Effects

What are the implications of different frame rates for your game’s music and sound
effects ?

Graphics and VRAM Allocation

What are the different ways of making your display full screen for both PAL & NTSC ?
How do you re-arrange your game code and data to function effectively with different
screen heights ?

Game Mechanics and Motion Capture

How best to design your game’s mechanics to make the game work well in both PAL
and NTSC and mode ? What are the implications of the display change for a typical game ?

Has your Motion Capture data been processed to reflect both PAL and NTSC frame
rates ?

6

GUIDELINES FOR PAL TITLES

LIBRARIES AND HARDWARE

PAL HARDWARE SUPPORT

Development Systems

PlayStation development systems (such as the DTL-H2000 and the DTL-H2500) are
PAL switchable.

The DTL-H2000’s main ISA board has a jumper clearly labelled
NTSC/PAL. To switch the hardware to PAL, set this jumper to PAL.

The DTL-H2550 is software switchable from the DESICONS monitor.

When placed in a PC, and connected to a suitable TV monitor in this mode, you will see
a black and white “test card” output on your monitor when using the standard AV cables.

Once you have set the development system to PAL mode your development system will
behave exactly like a PAL consumer PlayStation both in terms of display output (e.g. 50
Hertz display, 625 lines) and also in terms of the machine internals (vertical blank interrupt
50 times a second, and so on).

You will need to make a software switch inside your code to ensure that your programs
produce colour PAL mode correctly.

Debug Stations

Different Debug Stations are available for each territory, and are used for checking code
running on as near to a final machine as possible (i.e. only having 2Mb of main memory.
And with an OSD similar to that of the consumer machines). To fully test PAL titles, you
should obtain a DTL-H1002 1 PAL Debug Station.

PAL SOFTWARE LIBRARY SUPPORT

There areas in which PAL specific software issues need to be considered:

the graphics library (to make the software switch from NTSC to PAL)

the sound libraries (these are tied to the vertical blank rate, and so a small
change must be made to make sequenced sound work in PAL mode).

rendered sequences (which should be created and played at the correct frame
rate)

when laying out VRAM (display) memory

1 Will be renamed as DTL-H1002 during the latter part of ’96 (to meet “CE” electrical guidelines).

7

GUIDELINES FOR PAL TITLES

RENDERED SEQUENCES

This section describes the changes you will need to make to any rendered sequences in
your games. This section assumes your rendered sequence is using the PlayStation MDEC
hardware to decompress the sequence data.

The issues are:

Changes in Frame Rate

Changes in screen size (for full screen)

Frame Rate (fps)
NTSC 30 15 10 7.5
PAL 25 16.66 12.5 10 6.25

Sectors per Frame
NTSC 5 10 15 20
PAL 6 9 12 15 24

FRAME RATE CHANGE

Reference the table (above) for the range of frame rates (in frames per second) available
for your MDEC renders. These frame rates are directly determined by the number of CD
sectors you can read between the vertical blanks (see the second table).

For example, in NTSC mode, at 30 fps, you can read 5 CD sectors during the period
between 2 vertical blanks; at 15 fps, you can read 10 CD sectors because you have the time
in between 4 vertical blanks.

Although NTSC and PAL machines have CD drives that run at the same speed, (i.e. the
CD data rate is constant), in PAL mode, you have more time between vertical blanks, so
you can read correspondingly more data. Thus with PAL, Because you have more time, at
25 fps you can read 6 CD sectors, and at 12.5 fps, you can read 12 sectors.

The advantage is that the quality of your render can be better under PAL than NTSC.
The disadvantages are that you may have to convert or re-render an existing NTSC rendered
sequence to ensure that the render doesn’t appear too slow in PAL mode if you use the same
set of frames as in NTSC mode. This if you have stored 1 frame per MDEC frame for an
NTSC sequence, you may have to re-render the whole sequence at 25 / 12.5 / 6.75 frames
per second.

One solution is store your render on an analogue media (tape or whatever) to allow re-
sampling at the right frame rate (for example, if you have digitised some video rather than a
rendered sequence). If you have a considerable amount of render or streaming (e.g. in a
streaming based game or branching video game) you might like to see exactly how bad it
looks in PAL mode before you consider spending the time/money on re-rendering or re-
digitising.

8

GUIDELINES FOR PAL TITLES

INTERLEAVING XA AUDIO

The other consideration from the above problems with frame rate changes is how do
you interleave XA audio ? The interleaving ratio is different, because the number of sectors
you are using for each frame’s image is probably different. The simple answer is the
MovConv tool, which will interleave XA audio sectors in a PAL stream properly. If you
don’t use MovConv, then you will have to determine whether you need to make changes to
whatever tools you are using to allow the interleaving to work properly for PAL.

9

GUIDELINES FOR PAL TITLES

MUSIC AND SOUND EFFECTS

This section describes the minimal changes which need to be made to sound data and
code for the change from NTSC to PAL.

XA AUDIO

The problems of XA audio are described above for the case of interleaving XA with
streamed video data. If you are using raw XA only as a sound source, you have no problems,
because the CD rate is fixed and does not change between the two display modes.

DA AUDIO

The situation for using DA audio (Red Book CD audio) is very simple - you don’t need
to change anything, as the CD rate is fixed.

SPU AUDIO & SEQ SEQUENCES

The situation regarding SPU audio is a little more complex. VAG (SPU ADPCM data,
or raw samples) will play back at the same speed regardless of the display type, as this type
of playback is dependent on the SPU internal hardware clock.

However, if you are playing back a sequence (SEQ, which is based on standard MIDI
and created using the SMF2SEQ tool) designed for NTSC the individual samples will play at
the right rate, but they will be triggered wrongly by LIBSPU and LIBSND. This is because
the libraries are tied to the vertical blank rate of the machine in software.

Fortunately, there is a simple workaround for this, which should only cause problems
in extremely rare cases:- alter the tempo of the sequence to compensate for the change in
frame rate.

This can be done manually (by altering the speed of your original sequence), or
alternatively using a switch in the software libraries so that sequences are played back at the
right rate automatically. So for example, a sequence triggering a particular sample twice a
second (every 30 vertical blanks in NTSC mode, every 25 vertical blanks in PAL mode)
which was converted for NTSC, should have either its tempo speeded up by a factor of
30/25, or should run one fifth faster.

In libraries version 3.1 and onwards, it is possible to set the whole system to PAL mode
by calling:
long SetVideoMode(long mode); /* Part of libetc.lib in libs 3.1 */
/* Modes are: MODE_PAL, MODE_NTSC. */

This sets up libgpu and libpsu/libsn to PAL or NTSC mode, as long as you call it
before you initialise any of the other libraries. This saves you both setting the pad0 field (as
above) and manually altering the tempo for the sound libraries. The support for making the
change in tempo is included in libraries version 3.1 and onwards. The tick mode of the
sound libraries can be changed as follows:
 SsSetTickMode(SS_TICKVSYNC); /* Ticks according to mode of libs, set as above */
 SsSetTickMode(SS_TICK60); /* Ticks at NTSC speed anyway, eg 60Hz */

10

GUIDELINES FOR PAL TITLES

 /* Video mode as set above is relevant */
 SsSetTickMode(SS_TICK50); /* Ticks at PAL speed anyway, eg 50Hz */

 /* Video mode as set above is relevant */

11

GUIDELINES FOR PAL TITLES

GRAPHICS & VRAM ALLOCATION

This section describes the changes you will need to make to your product in order to
produce an acceptable graphics display in PAL mode, along with details of how to build a
taller display to fill the PAL screen.

ALTERNATE GRAPHICS MODES

First, the standard resolution used for NTSC titles is 240 pixels. This is not tall enough
to fill the whole PAL display. There are three main approaches to this problem.

Letter-boxing

This approach is the easiest, and also the least attractive, acceptable. In this case, you
take the NTSC display which your game already generates, and simply centre it on the PAL
display; this results in no changes to your graphics display code (at least in terms of creating
extra material to fill the gaps) but also means there is a significant black border at the top
and bottom of your display (which doesn’t look very attractive, and is fairly obvious).

Since 1st June 1996, SCEE has expected that no titles should be Letter-boxed..

Letter-boxing with border filling

The next alternative is to letterbox the NTSC display (as above) and fill in the borders
with additional graphics.

There is a significant problem with this approach - the concept of filling borders is
actually patented by Atari Corporation; this technique was used to fill the whole display in
an early Atari console. As such SCE cannot endorse this approach, nor can it provide source
code to do this as part of the software libraries for PlayStation development.

Using a full screen PAL display

The remaining technique is to use full screen PAL (e.g. at least 256 lines rather than 240
lines) high drawing and display area. A 256 high display will fill the PAL screen properly
without significant borders.

 An existing NTSC title (especially if its 3D) may require a significant amount of
reworking to use a 256 high display, and we strongly recommend that plans for PAL
support are made during initial game design.

In addition, simply “stretching” your existing NTSC display may adversely effect the
aspect ratio.

12

GUIDELINES FOR PAL TITLES

WRITING CODE THAT SUPPORTS BOTH 240 NTSC AND 256 HIGH PAL DISPLAYS

You must make the software switch for PAL mode displays. This is performed using
SetVideoMode(). With this set, when you call PutDispEnv(), libgpu will set the display to the
mode you have requested. See the code fragment below for an example.
#ifdef PAL_256 /* Do we want 256 (PAL) high ? */
 #define FRAME_X 320 /* Assume 320 pixels wide */
 #define FRAME_Y 256 /* Frame is 256 high. */
 #define SCREEN_X 0 /* Offset display by 0 in X */
 #define SCREEN_Y 24 /* Offset display by 24 in Y */
#else /* Otherwise assume 240 NSTC high */
 #define FRAME_X 320 /* Assume 320 wide display. */
 #define FRAME_Y 240 /* Make frame 240 pixels. */
 #define SCREEN_X 0 /* Offset X by 0. */
 #define SCREEN_Y 28 /* Offset Y by 28 pixels. */
#endif
/* Note: display offsets may or may not centre the display on a */
/* particular TV. SCEE will provide offsets which give an */
/* average centring for various displays after some research. */

typedef struct {
 DRAWENV draw; /* drawing environment */
 DISPENV disp; /* display environment */
} DB;
DB db[2]; /* Standard drawing and display environment set up. */

void main()
{
ifdef PAL_256
 SetVideoMode(MODE_PAL); /* This is for libs 3.1 and onwards. */
endif

 /* Set up drawing and display environments as per usual. */
 SetDefDrawEnv(& db[0].draw, 0, 0, FRAME_X, FRAME_Y);
 SetDefDispEnv(& db[0].disp, 0, FRAME_Y, FRAME_X, FRAME_Y);
 SetDefDrawEnv(& db[1].draw, 0, FRAME_Y, FRAME_X, FRAME_Y);
 SetDefDispEnv(& db[1].disp, 0, 0, FRAME_X, FRAME_Y);

 /* Apply offsets to display to centre the display */

 db[1].disp.screen.x = db[0].disp.screen.x = SCREEN_X;
 db[1].disp.screen.y = db[0].disp.screen.y = SCREEN_Y;

/* Set up the width and height of the display on screen. 0 is default */
 db[1].disp.screen.h = db[0].disp.screen.h = FRAME_Y;
 db[1].disp.screen.w = db[0].disp.screen.w = 0;

ifdef libs30
/* We recommend that you use libraries 3.1 or above, which provided support
 for SetVideoMode. If you are using libraries 3.0 or below, a different
 technique is required: Set the pad0 field to tell GPU to go to PAL mode.
*/
 db[1].disp.pad0 = db[0].disp.pad0 = 1;
endif
}

13

GUIDELINES FOR PAL TITLES

VRAM IMPACT & SUGGESTED OPTIMISATIONS

The above ideas have varying effects on the use of VRAM. The sections below describe
the VRAM impact.

Letter-boxing

This approach has no impact on VRAM arrangement; your NTSC title remains exactly
the same in terms of display and VRAM, so no alterations are needed.

Using a 256 high display

This is the hardest of all; in the typical example of a 320x240 NTSC title, the display and
drawing areas in VRAM are kept on the left hand side of the VRAM area (Figure 1), with a
320x32 area under the two areas kept for CLUT usage (or perhaps some sprite or texture
map data). So in order to fit a 320x256 display and drawing area, either a 320x32 area must
be found elsewhere in VRAM, or the contents of VRAM re-arranged to allow for this extra
space elsewhere (Figure 2).

Obviously, this will most likely have a knock-on effect in many products which swap
textures in and out of VRAM or do tricks with moving textures or the display / drawing
areas around, and may require a revision of the title’s VRAM handling mechanisms. The
easiest case is a product where VRAM is not really that full, and CLUTs or small textures
can be relocated from the area below the drawing and display areas.

Buffer 0Buffer 0

Buffer 1Buffer 1

TexturesTextures

CLUTSCLUTS

Figure 1 Typical layout of VRAM for NTSC which will preclude full screen PAL

14

GUIDELINES FOR PAL TITLES

Obviously, your title may organise VRAM completely differently than that described
above (there are some PlayStation titles with triple buffers!), but the fact remains that a 256
high display will require you to find extra VRAM space from somewhere. If you are lucky
then the re-organisation will be simple; but the worst case may be very serious and might
require a lot of re-coding and graphic re-arrangement. Some possibilities are dropping
textures from objects in the game (for the case of a 3D title) or using a smaller texture map
stretched over a larger area (for 2D or 3D, but impacts performance and graphic quality).

OVERSCAN AND SAFE AREAS

You should consider the overscan area on TVs, and its impact on graphic displays (for
both NTSC and PAL).

Overscan is where the electron gun from the TV draws more of a raster line than can
actually be seen on the TV screen; this is perceived as some of the display going missing
from the right, left, top or bottom of the display. For game design this is important as player
status information which is inside a possible overscan area may not be displayed on some
TVs.

In general, placing important game information, lettering or even important game play
elements hard against any edge of the display is a bad idea. Unfortunately, overscan is
different for each different type of TV, so general guidelines have to be given rather than
hard figures. You may find that on a particular TV you can see all of the display, others may
show only one edge of the display.

For NTSC, vertical resolutions such as 240 and 480 have full overscan.

Buffer 0Buffer 0

Buffer 1Buffer 1

TexturesTextures

CLUTSCLUTS

Figure 2 Layout of VRAM for full screen PAL

15

GUIDELINES FOR PAL TITLES

For PAL, vertical resolutions of 256 and 512 have no overscan (288 would be required).

You should ensure that no important information (scores, text) is positioned near
display edges (around 8 or 16 pixels away from the edges depending on resolution).

16

GUIDELINES FOR PAL TITLES

GAME MECHANICS AND MOTION CAPTURE

GAME MECHANICS

In relation to designing titles for both NTSC and PAL, this issue is the most difficult to
provide guidelines on as the game mechanics are entirely generated by you, the developer.

It is almost certain that the game mechanics and event generation in your game is tied to
the vertical blank interrupt, however. For example, in a fighting game, the fact the user hit
the ‘punch’ button is recorded at vertical blank ‘n’; the game then knows that for the next
30 vertical blanks it is drawing the character punching on screen, and at vertical blank
‘n+30’ it must check to see if the punch hit the opponent.

If this is the way the game works in NTSC, then all the timings must be altered for PAL;
the animation of the player punching must run for only 25 vertical blanks, and the check to
see if the opponent hit must occur at ‘n+25’. However, the 30 frames of animation for the
NTSC punch cannot easily be converted to 25 frames of animation for a PAL punch; but
they will look wrong in PAL mode. Similar types of timing problems can be found for any
game genre, more or less.

Converting game mechanics to run at the correct rate for PAL is definitely a non-trivial
task, but essential to prevent your game appearing to run at a rate one sixth slower than its
NTSC equivalent..

If the mechanics are not designed or converted correctly, it will appear as if there is
something wrong with your PAL game conversion, which is not good either for your image
or your sales.

MOTION CAPTURE DATA

Many titles use motion capturing techniques to correctly convey the movement of “live”
objects (to capture the subtleties in the movement of an athlete or animal).

The process of transforming the captured information, into data to be used within a
game will normally make the data dependent on the frame rate.

You may need to ensure that two sets of data (for the PAL and NTSC variants of your
game) are collected during this initial capture/transformation process, or to sample at rates
such as 300 Hz (which can be subdivided down to either PAL or NTSC rates).

17

GUIDELINES FOR PAL TITLES

SUMMARY

Plan your development, considering both PAL and NTSC formats during the
initial design

If possible - localise / customise for each display type, to take advantage of the
benefits each form provides; e.g. PAL can calculate / draw more in one frame.
NTSC has a faster refresh rate.

Technically, you should consider a number of key issues:.

SPU sequenced sound should run at the correct speed .

There is no reason why this should not be the case.

Rendered sequences should run at the correct speed for PAL.
This may be quite difficult to achieve, unless the product has been designed for both NTSC and
PLA systems, but the product will look inferior without this effort;.

The display should be full screen PAL (at least 256/512 pixels)
You are strongly encouraged to make this change, because the title will look inferior to the
NTSC version otherwise, which results in problems with selling the game and also the
PlayStation hardware.

Text and essential display items should not be near the edges of the
display.
This requirement just needs some testing on various TVs, and judicious placement of status
information and important game-play items in the display.

Some attempt should be made at converting the game mechanics.
This may be the hardest change of all. However you must remember that a game that runs 1/6th

slower for the European market may not sell as well as its correctly designed competitors.

