
==
 T H E " U N - O F F I C I A L"
 PLAYSTATION DEVELOPMENT FAQ

 SOUND
 CONFERENCE
==

 Release v1.1
 Last Updated: August 31, 1995

DISCLAIMER

This FAQ is to aid in informing the licensed game
developer about the development environment provided
by Sony Computer Entertainment.

The Development System Tool to which this manual
relates is supplied pursuant to and subject to the
terms of the Sony Playstation Licensed Developer Agreement.

This FAQ is intended for distribution to and use only
by Sony PlayStation Licensed Developers in accordance with
the Sony Playstation Licensed Developer Agreement. The
information in thismanual is subject to change without
notice.

The content of this manual is Confidential Information
of Sony for the purposes of the Sony PlayStation Licensed
Developer Agreement and otherwise.

TRADEMARK INFORMATION

PlayStation and Sony Computer Entertainment names and logos
are trade names and/or trademarks and/or copyright artwork
of Sony Corporation(or its subsidiaries).

All specific names included herein are trademarks and are
so acknowledged: IBM, Microsoft, MS-DOS. Any trademarks not
mentioned here are still hypothetically acknowledged.

COPYRIGHT NOTICE

[1.] SOUND

[1.1.]: Reverb Setup

[1.1.1.]: With “libsnd” you can set 8 types of reverb mode;
is there a function you can use to find out the size of the
reverb work area taken in the SPU sound buffer for each mode?

We do not provide a function to find the reverb work area size. The
size of the reverb work area taken in the sound buffer is uniquely
determined by the mode decision. This area is acquired and held with
not dynamic variation.

The table below gives the amounts of work area consumed. These are
given also under SpuSetReverbModeParam in the SPU library document
"function.txt".

Table: Space occupied in sound buffer for each reverb mode
--

 Mode Hex Decimal

 SPU_REV_MODE_OFF off 80 (*) 128(*)
 SPU_REV_MODE_ROOM room 26c0 9920
 SPU_REV_MODE_STUDIO_A studio (small) 1f40 8000
 SPU_REV_MODE_STUDIO_B studion (medium) 4840 18496
 SPU_REV_MODE_STUDIO_C studion (large) 6fe0 28640
 SPU_REV_MODE_HALL hall ade0 44512
 SPU_REV_MODE_SPACE space echo f6c0 63168
 SPU_REV_MODE_ECHO echo 18040 98368
 SPU_REV_MODE_DELAY delay 18040 98368
 SPU_REV_MODE_PIPE pipe echo 3c00 15360
--

(*) From an address setting standpoint, even if mode is 'off',
128 bytes are consumed if it was SpuReserveReverbWorkArea(SpuOn)
[that was called].
In the case of SpuReserveReverbWorkArea(SpuOff), the space
consumed is 0, the same as for other modes.

Related functions: SpuReserveReverbWorkArea, SpuSetReverbModeParam,
SpuSetReverb

[1.1.2.]: What are the relationships between the work areas
whose sizes vary according to the reverb mode setting, and
the sound buffer memory management mechanisms (‘SpuMalloc’,
etc.)?

[The work areas] are managed via the following algorithms.

1. Cases in which reverb work area has been reserved by means of
SpuReserveReverbWorkArea(SpuOn)
SpuMalloc/SpuMallocWithStartAddr
Areas can be acquired in an area of [size] (0x7ffff - work area
size), starting from address 0x01000, according to the mode.

2. Cases in which work area has been unreserved by means of
SpuReserveReverbWorkArea(SpuOff)
SpuMalloc/SpuMallocWithStartAddr
Areas can be acquired in the entire sound buffer area,
addresses 0x01000 to 0x7ffff.SpuSetReverb
If an area with a size corresponding to the mode being used has
been acquired as reverb work area in another area by means of
SpuMalloc/SpuMallocWithStartAddr, then SpuSetReverb(SpuOn) will
be ineffective [? or perhaps, "invalid" ?].

3. Regardless of the [?current?] reverb work area reservation, when a
change is to be made to the reverb mode, SpuSetReverbModeParam
analyzes whether or not [it] can acquire the area needed as work
area, based on the information from the sound buffer memory
management mechanisms, and sets the various attributes at that
time if [that area] can be acquired. If [that area] cannot be
acquired, it returns without setting [the attributes].

[? Translator's note: Original text here is syntactically ambiguous;
above interpretation relies on technical context to resolve the
ambiguities. ?]

4. If you execute SpuMalloc/SpuMallocWithStartAddr in a condition
when there is no reverb work area reserved by
SpuReserveReverbWorkArea, and afterwards attempt to reserve reverb
work area anew by means of SpuReserveReverbWorkArea, then [it]
analyzes whether or not [it] can acquire a reverb work area region
of the size needed by the current reverb mode, based on the
information from the sound buffer memory management mechanisms,
and reserves that region at that time if [that area] can be
acquired. If [that area] cannot be acquired, it returns without
reserving [any work area].

5. The reverb work area [size] varies according to the reverb mode.
The only time that the reverb work area size changes is when you
set the mode with SpuSetReverbModeParam. The behavior of
SpuMalloc/SpuMallocWithStartAddr, SpuReserveReverbWorkArea, and
SpuSetReverb changes when the mode setting changes.

Related functions: SpuReserveReverbWorkArea,
SpuIsReverbWorkAreaReserved,
SpuSetReverbModeParam, SpuSetReverb, SpuMalloc,
SpuMallocWithStartAddr, SpuSetTransferStartAddr

[1.1.3.]: Why doesn’t reverb take effect even when I’ve
turned reverb on and set the reverb parameters?

If you change the mode when setting reverb [parameters], noise may be
generated for an instant due to invalid values remaining in the reverb
work area.

In order to avoid this to the greatest degree possible,
SpuSetReverb(SpuOff) is internally executed whenever the mode is
changed. Since SPU_REV_MODE_OFF is set as the initial value of reverb
mode, this means that even at the time of the first setting, reverb
will end up being turned off by SpuSetReverbModeParam, even if you
have previously executed SpuSetReverb. Therefore, you should always
execute SpuSetReverb after SpuSetReverbModeParam.

Also, even if you execute SpuSetReverb immediately after executing
SpuSetReverbModeParam, noise will inevitably be generated due to the
inherent nature of reverb. To avoid this, you must obey the following
rules until you truly need reverb:

∑ do not execute SpuSetReverb(SpuOn)

∑ do not set Depth in SpuSetReverbModeParam

Summarizing from the above, the points where care is required are:

1. If you are going to use reverb, then do the setup at the very
start, not just before use. When you set it up, place it in
the off state.

2. Do the reverb setup in the following order:
 SpuSetReverbModeParam

SpuSetReverb

3. To avoid noise if you need to change the reverb mode during the
game, avoid doing a set mode operation immediately before
turning reverb on.

Note also that if you end up taking the entire sound buffer area for
waveform data it will be impossible to acquire reverb work area, and
therefore impossible to use reverb, since SpuSetReverbModeParam will
end without setting the reverb mode, as described in "[3-2]:3.". To
avoid this, keep track of your reverb work area sizes and waveform

data sizes, and set up the reverb modes and build the waveform data
so that the required work area and waveform data will fit into
512 KB.

Related functions: SpuSetReverbModeParam, SpuSetReverb,
SpuReserveReverbWorkArea,
SpuIsReverbWorkAreaReserved,
SpuSetTransferStartAddr, SpuMalloc,
SpuMallocWithStartAddr

[1.1.4.]: Why doesn’t reverb take effect even though I’ve
set up the reverb parametersand turned reverb on as in [3-3]?

Because in the SoundDelicatessen (DTL-S710) Mac artist tool, the
individual tones were not given a reverb attribute. Display the ADSR
window with Program menu Æ Tone menu Æ ADSR ... , and set an [¥] in
the 'reverb' check box in 'play mode' in that window. This will set
the reverb attribute in the selected Tone's mode (bit 3 of mode = 1,
i.e., mode = 4), so that reverb will take effect. Note, however,
that reverb goes into effect universally on a Tone for which you set
that check box to [¥], you must pay due consideration to reverb
depth, overall atmosphere, and such when doing so.

[1.1.5.]: With programs which set reverb on, re-running the
program sometimes generates noise. What about this?

When exiting a program that uses reverb, you absolutely must do the
following:

∑ SPU library case:

#include <libspu.h>

SpuReverbAttr r_attr;
r_attr.mask = (SPU_REV_MODE |

 SPU_REV_DEPTHL | SPU_REV_DEPTHR);
r_attr.mode = SPU_REV_MODE_OFF;
r_attr.depth.left = 0;
r_attr.depth.right = 0;

SpuSetReverbModeParam (&r_attr);
SpuSetReverb (SpuOff);

∑ Sound library case:

#include <libsnd.h>

SsUtReverbOff();
SsUtSetReverbType (0);
SsUtSetReverbDepth (0, 0);

If you do not do this, you may sometimes get noise on the next run.

Related functions: SpuSetReverbModeParam, SpuSetReverb, SsUtReverbOff,
SsUtSetReverbType, SsUtSetReverbDepth

[1.2.]: Sound Volume

[1.2.1.]: There is a sound volume setting function CdMix in
libcd. Is this used to set the CD/DA and/or CD-ROM/XA sound
volume?

In the case of CD output, whenever the CD decoder interprets what is
read from the CD as music data such as CD/DA or CD-ROM/XA (ADPCM)
[data], it splits that data into left and right and sends it to the
SPU, where it is input to the SPU section called Serial A and mixed
with the sound data output by the SPU, and then output from the audio
output. The SPU library and sound library (libsnd) provide functions
to manipulate the sound volume of this music data from the CD. The
functions and their usage are given below.

∑ SPU library

#include <libspu.h>

SpuCommonAttr attr;

attr.mask = (SPU_COMMON_MVOLL | /* master volume (left) */
 SPU_COMMON_MVOLR | /* master volume (right) */
 SPU_COMMON_CDVOLL | /* CD input volume (left) */
 SPU_COMMON_CDVOLR | /* CD input volume (right) */
 SPU_COMMON_CDMIX); /* CD input on /off */

/* set master volume to mid-range */
attr.mvol.left = 0x1fff;
attr.mvol.right = 0x1fff;

/* set CD input volume to mid-range */
attr.cd.volume.left = 0x1fff;
attr.cd.volume.right = 0x1fff;

/* CD input ON */
attr.cd.mix = SpuOn;

/* set attributes */
SpuSetCommonAttr (&attr);

∑ Sound library (libsnd)

#include <libsnd.h>

/* CD input ON */

SsSetSerialAttr (SS_SERIAL_A, SS_MIX, SS_SON);

/* set volume to mid-range */
SsSetSerialVol (SS_SERIAL_A, 0x40, 0x40);

You can manipulate the volume of music data from CD via either of the
above setups.

Related functions: SpuSetCommonAttr, SsSetSerialAttr, SsSetSerialVol

[1.2.2.]: Whenever I execute SpuInit (or SsInit) after
executing CdInit, I lose the CD sound that I had been getting
up to then by executing CdInit alone. What about this?

Both SpuInit and SsInit set the CD volume to 0. This is because, just
as their names indicate, they are for sound system initialization.

Therefore, to use music data from the CD, you absolutely must use
SpuSetCommonAttr (in the sound library, SsSetSerialAttr, and
SsSetSerialVol) as described in B-1.

Related functions: SpuSetCommonAttr, SsSetSerialAttr, SsSetSerialVol

[1.3.]: Finding Out The Key Status Of An Individual Voice

[1.3.1.]: In cases with libspu where I'm using 24 voices, is
there a way that I can find out whether a particular voice is
currently keyed on?

By using SpuGetKeyStatus and SpuGetAllKeysStatus you can check the key
status for a particular voice or for all voices.

Related functions: SpuGetKeyStatus, SpuGetAllKeysStatus

[1.4.]: Voice Data Attributes

[1.4.1.]: I want to force looping on the waveform of a voice
that I've keyed on with SpuSetKey. But it won't loop for me
even though I set SPU_VOICE_LSAX in mask in the SpuVoiceAttr

structure and call SpuSetVoiceAttr specifying the address in
the sound buffer in loop_addr.

The only waveform data for which you can modify looping with
SPU_VOICE_LSAX is that waveform data which was set up for looping at
the time it was created. If looping wasn't set up when it was
created, setting SPU_VOICE_LSAX and calling SpuSetVoiceAttr will have
no effect. If you want to do looping, you must set up the looping
when you create that waveform data.

Related functions: SpuSetVoiceAttr, SpuSetKey

[1.5.]: Waveform Transfer

[1.5.1.]: If I transfer data to the sound buffer by means of
I/O transfer, do I need to call SpuIsTransferCompleted to
check for completion?

You do not need to use SpuIsTransferCompleted to check whether an I/O
transfer has completed, because execution will return from SpuWrite
when processing is complete. If you call SpuIsTransferCompleted when
the transfer mode is I/O transfer, SpuIsTransferCompleted will return
1 regardless of its argument.

Related functions: SpuIsTransferCompleted, SpuWrite, SpuRead,
SpuSetTransferMode

[1.5.2.]: Why doesn't execution return from
SpuIsTransferCompleted if I call it to check for completion
after executing a DMA transfer?

The overall operation of the current library is such that you must
execute either _96_remove() or CdInit() ahead of all other
processing. If you do not, execution may not return, especially for
SpuIsTransferCompleted(SPU_TRANSFER_WAIT).

Related functions: SpuIsTransferCompleted, SpuWrite, SpuRead,
SpuSetTransferMode, _96_remove

[1.6.] Miscellaneous

[1.6.1.]: How many VAB data can be opened?

Up to 16 VAB data can be opened simultaneously. When opening some
data, repeat the following procedure.

SsVabOpenHead() --> SsVabTransBody() --> SsVabTransCompleted()

[1.6.2.]: What in the VAB file corresponds to the MIDI data
track number?

The MIDI data track number corresponds to the VAB data program number.
It can be said that the "program" of VAB data is equivalent to the
program set by the MIDI program change.

[1.6.3.]: How should the VAB data program be handled in order
to play a track with a MIDI instrument?

For example, if the forth MIDI track is played by drums, put the drum
sound into the forth VAB data program.

1.6.4.]: How should an instrument be set if it is switched to
another in the same track during a piece of music?

Each instrument should be prepared as the separated program in the VAB
data because the MIDI program change is used for switching the
instrument in the track.

[1.6.5.]: Repeating ON/OFF for the reverb doesn't succeed.

What is the cause?

The following will cause the improper reverb operation. Please check
them.

1) Since the SPU local memory is used up, the reverb work area cannot be
allocated.

2) The reverb utilization attribute (mode) is not set properly in Sound
Delicatessen.

[1.6.6.]: How can the loop of music (such as endless playback
of a piece of music) be performed?

The loop of music can be performed by the SsSeqPlay() function as
follows:

 1) A piece of music is played back 3 times.
 SsSeqPlay({SEQ address}, SSPLAY_PLAY, 3);

 2) A piece of music is played back endlessly.
 SsSeqPlay({SEQ address}, SSPLAY_PLAY, SSPLAY_INFINITY);

[1.6.7.]: Can the VAB data read in the parent process be used
as it is when executing the child process with Exec()?

Under the current library specification, the internal status will be
cleared when the Exec()function is executed. Thus, VAB and SEQ must be
set and transferred every time in the child process.

[1.6.8.]: How can stereo/monaural modes at CD-DA playback be
switched?

Use the CdMix() function to switch the modes. The SsSetStereo() and
SsSetMono() functions are provided for the SPU sound.

[1.6.9.]: Why does the SsVabOpen() function not work after
the SsEnd() execution?

It is the proper operation. Since the SsEnd() function stops the sound
system, the SsVabOpen() function doesn't work after the SsEnd()
execution. The SsEnd() function must be used for stopping the sound
system
in such a case as performing the overlay.

[1.6.10.]: Why does the sound of moving pictures not come out
when executing the SsInit() function after the execution of
CdInit()?

Because, while the CdInit() function turn up the volume, the SsInit()
function initializes all the volumes. However, the order of
initialization
(CdInit() ---> SsInit()) is correct. Thus, after the initialization, set
the CD mixing and volume effective
with the SsSetSerialAttr() and SsSetSerialVol() function at the
necessary timing.

[1.6.11.]: Why is '-1' returned at the second SsVabOpen()when
calling the function in a row?

Since the SsVabOpen() function performs the wave form data transfer into
the sound buffer, it is necessary to check the end of the transfer with
the SsVabTransCompleted() function after calling the SsVabOpen()
function. Without calling SsVabTransCompleted(), the second SsVabOpen()
will be rejected by the library, and '-1' will be returned. Moreover,
the wave form data in VAB data will be left in main memory. For the
effective
use of memory, using the SsVabOpenHead() and SsVabTransBody() functions
is recommended.

[1.6.12.]: Which reverb type is effective, set with NRPN
control or set by the SsUtSetReverbType() function?

It is not until 'Reverb Type' data set with NRPN is recognized that it
becomes effective instead of 'Reverb Type' set by the sound utility
functions. Other 'Reverb' information will be treated in the same way.

[1.6.13.]: When describing NRPN which sets the reverb without
the DSP program designation in a program and playing it, do
the Ss- functions set the DSP program of 'Room' type?

As for the reverb settings in NRPN, such attributes as 'Mode', 'Reverb
Type', and 'Reverb Depth', must be set each. Moreover, when describing
NRPN which sets the reverb without the DSP program designation in the
program and playing it, the settings will be performed by setting the
reverb ON and setting 'Depth' with the sound utility functions. However,
if 'Depth' setting is performed before 'Type' setting, noise may be
generated by the remarkable change in the volume.
Thus, it will be better to perform all the settings with NRPN.

[1.6.14.]: Are there any differences among the followings?

 * Reverb depth controlled by NRPN * 'external effect
depth' specified by the control number #91 * Reverb depth
set by the SsUtSetReverbDepth() function

No. All is the same.

[1.6.15.]: Does the start point of a loop indicate the
location described by NRPN, or the location where the
immediately next MIDI event exists?

The start point of the loop becomes effective from the MIDI event
immediately after the NRPN description. That is to say, the MIDI data
after the data1 description of Loop1 becomes the start pointer.

[1.6.16.]: Is it enough for the SEQ data with the endless-
loop description with NRPN to be played only once?

Yes. Once is enough as for the SEQ data with the endless-loop setting.

[1.6.17.]:Why does the loop designated with Control Change in
NRPN not work with Sound Delicatessen?

As for the SEQ playback, Sound Delicatessen doesn't correspond to NRPN.
In addition, since the SEQ playback with Sound Delicatessen has such
problems as the unstable tempo, it could not be recommended. Check the
conformity between the SEQ data and the VAB data with a sequencer
software on Macintosh via MIDI Manager or Free MIDI. Since DTL-H700 can
be recognized as the virtual MIDI instrument by MIDI Manager with Sound
Delicatessen, SMF and VAB will be played according to the following
structure.

 SMF VAB
 | „
 Mac Sequence soft „
 | „
 MIDI Manager „
 „¤„Ÿ„Ÿ„Ÿ„Ÿ„Ÿ„|„Ÿ„Ÿ„Ÿ„Ÿ„Ÿ„£
 _«
 Sound Delicatessen
 _«
 DTL-H700

However, the current NRPN version corresponds to the reverb only even if
using MIDI Manager. Because, for example, Sound Delicatessen cannot
control the loop in the sequence soft. Therefore, in order to check the
other NRPNs such as the loop, use Programmer Tool.

[1.6.18.]:Is there any certain ways to generate the sound of
a specific instrument in libsnd?

Yes. Increase the used VAB program priority in ToneList.

[1.6.19.]:Is there any ways to reserve some channels for the
sound effect?

Calling the SsSetReservedVoice() function immediately after SsInit()
will limit the number of voices allocated by libsnd. The remaining
channels can be used for the sound effect in libspu.

[1.6.20.]:What should be set for 'ATTR' on 'Programs' screen
of Sound Delicatessen?

ATTR(attribute) is not used by the sound library.
16-bit short variables can be set here, and values from -32767 to 32768
are valid. This can be used freely.

[1.6.21.]:What is the priority setting on 'Tones' screen of
Sound Delicatessen?

The priority is provided for determining which sound should be turned
off prior to others. It can be set at 0 to 127, and the higher the
priority becomes, the later the sound will be turned off. For example,
in the case of a lot of simultaneous sound generation, in order to be
sure to generate the melody line and the drum part, the priorities of
the melody and the tone used by the drum must be higher.

- -----------------------------

[1.6.22.]:Can some VAB data be contained in the sound buffer
and used as separate sound sources simultaneously? For
example, VAB1 is assigned for SEQ, and VAB2 for other sound
effects.

The VAB-related processing must be performed twice to do it. Refer to
the following sample.

/*
For convenience's sake, the printf() function is used for the error
output. For example, vab1 must be used as VAB ID when using SEQ, and
vab2 must be used as VAB ID when using the sound effect. However, if the
total of VB capacity is over the sound buffer capacity,
it cannot be used. The sound buffer capacity is as follows:

[512KB - 0x1010 - (Capacity of the reverb work area)] bytes.

Unless the reverb work area is used, 80 bytes will be consumed with the
current library.
*/

short vab1, vab2;

/* --
* VAB #1 transmission
* -- */

/* VH #1 transmission */
vab1 = SsVabOpenHead ((u_char *)VH1_ADDR, -1);
if (vab1 == -1) {
 printf (""SsVabOpenHead : Can NOT open header.\n"");
 return;
}

/* VB #1 transmission */
if (SsVabTransBody ((unsigned char *) VB1_ADDR, vab1) != vab1) {
 printf (""SsVabTransBody : failed !!!\n"");
 return;
}
SsVabTransCompleted (SS_WAIT_COMPLETED);

/* --
* VAB #2 transmission
* -- */

/* VH #2 transmission */
vab2 = SsVabOpenHead ((u_char *)VH2_ADDR, -1);
if (vab2 == -1) {
 printf (""SsVabOpenHead : Can NOT open header.\n"");
 return;
}

/* VB #2 transmission */
if (SsVabTransBody ((unsigned char *) VB2_ADDR, vab2) != vab2) {
 printf (""SsVabTransBody : failed !!!\n"");
 return;
}
SsVabTransCompleted (SS_WAIT_COMPLETED);

