
==
 T H E " U N - O F F I C I A L"
 PLAYSTATION DEVELOPMENT FAQ

 LIBGPU
 CONFERENCE
==

 Release v1.1
 Last Updated: August, 31, 1995

DISCLAIMER

This FAQ is to aid in informing the licensed game
developer about the development environment provided
by Sony Computer Entertainment.

The Development System Tool to which this manual
relates is supplied pursuant to and subject to the
terms of the Sony Playstation Licensed Developer Agreement.

This FAQ is intended for distribution to and use only
by Sony PlayStation Licensed Developers in accordance with
the Sony Playstation Licensed Developer Agreement. The
information in this manual is subject to change without
notice.

The content of this manual is Confidential Information
of Sony for the purposes of the Sony PlayStation Licensed
Developer Agreement and otherwise.

TRADEMARK INFORMATION

PlayStation and Sony Computer Entertainment names and logos
are trade names and/or trademarks and/or copyright artwork
of Sony Corporation(or its subsidiaries).

All specific names included herein are trademarks and are
so acknowledged: IBM, Microsoft, MS-DOS. Any trademarks not
mentioned here are still hypothetically acknowledged.

COPYRIGHT NOTICE

[1.] Library GPU (LIBGPU)

[1.1.]:How can the texture distortion be avoided that occurs
when a texture-mapped rectangle polygon is displayed with
transparent perspective conversion?
GPU in PlayStation supports the linear texture mapping. This means that,
only as for the 'texture', the middle points of lines before conversion
will be the middle points even after transparent perspective conversion.
Also, since a rectangle is composed of 2 triangles, the following
problem will take place.

 A B
 „¬„ª„ª„ª„ª„ª„– If this rectangle is altered in shape to a trapezoid
 „« _^„« with AB // CD, the line, 1 - 4, will be straight.
But,
 „«1 2 _^ „« if it is altered freely, the line, 1- 4, will be bent.
 „«+ + _^* * „«
 „« _^ 3 4 „«
 „«_^ „«
 „¯„ª„ª„ª„ª„ª„®
 C D
(++ and ** are texture patterns.)

Since this is the specification, the effective use of the software only
can make it possible to avoid this problem.

The following ways may be suggested.

 1) Dividing the rectangle ABCD into small pieces to reduce the bend of
the line 1 - 4. However, this will increase the registered polygons and
the overhead, and as a result, the number of polygons for other
characters will be reduced.

 2) Letting the distortion look more natural by manipulating the texture
pattern. However, the success depends on trial and error.

 3) Switching some prepared patterns of the texture every view point if
the change pattern is fixed. The texture is distorted beforehand
assuming the distortion after conversion. However, this consumes
texture area substantially, and it is difficult to prepare a lot of
patterns beforehand in fact.

Therefore, the best way will be 1). Try to avoid this situation by
linking these ways.

[1.2.]:I would like to know about the texture cache
specification.
The size of the texture cache depends on the texture modes as shown
below.

 Texture Cache size

 4-bit 64_~64
 8-bit 32_~64

 16-bit 32_~32

When the texture pattern used by a primitive is within this range, the
texture will be cached, and high-speed drawing will be feasible. Also,
only 1 entry of a CLUT will be cached. Thus, as far as the CLUT used by
the primitive isn't switched, the CLUT will be cached and high-speed
drawing will be feasible. The texture cache and the CLUT cache will be
flushed automatically after the access to the frame buffer.

[1.3.]:How can the shape of a sprite be altered?
It is easy to alter the shape freely with libgpu. With the POLY_FT4
structure, after the initialization by SetPolyFT4() and setTPage,
execute the AddPrim() function by substituting any value into the
structure member.

[1.4.]:How can flicker caused by the large-sized sprite
rotation be avoided?
GPU performance depends on the number of drawing pixels and the depth of
drawing. Therefore, even if there are only 10 sprites, but if the size
is 255 x 255, the processing will be beyond the CPU performance to be
incomplete. According to the report, it is guessed that quite large 16-
or 8-bit images are rotated. The internal arithmetic functionality of
GPU is used for the distortion/rotation, but this is also the limited
specification. Thus, if the extreme distortion/rotation/scaling are
carried out, the

internal arithmetic speed will not be able to keep up with it. Use GPU
in consideration of the smaller number of drawing pixels, and the
effective cache-hit.

 [1.4.1.]:How can a sprite pattern be flipped?

Use POLY_FT4 instead of SPRITE to flip 'u' and 'v' corresponding to each
other. For example, if flipping (u, v) on y-axis, it is y-axis flipping.

 (u1,v1) (u2,v2) (u2,v2) (u1,v1)

 1--------2 1--------2

 | | -> | |

 | | | |

 3--------4 3--------4

 (u3,v3) (u4,v4) (u4,v4) (u3,v3)

However, since the processing speed of POLY_FT4 is half of that of
SPRITE, use SPRITE for the patterns which don't have to be flipped.

