
SDevTC Development Environment

© 1998 Sony Computer Entertainment Inc.

Publication date: August 1998

Sony Computer Entertainment America
919 E. Hillsdale Blvd., 2nd floor
Foster City, CA 94404

Sony Computer Entertainment Europe
Waverley House
7-12 Noel Street
London W1V 4HH, England

The SDevTC Development Environment manual is supplied pursuant to and subject to the terms of the
Sony Computer Entertainment PlayStation® License and Development Tools Agreements, the Licensed
Publisher Agreement and/or the Licensed Developer Agreement.

The SDevTC Development Environment manual is intended for distribution to and use by only Sony
Computer Entertainment licensed Developers and Publishers in accordance with the PlayStation® License
and Development Tools Agreements, the Licensed Publisher Agreement and/or the Licensed Developer
Agreement.

Unauthorized reproduction, distribution, lending, rental or disclosure to any third party, in whole or in part,
of this book is expressly prohibited by law and by the terms of the Sony Computer Entertainment
PlayStation® License and Development Tools Agreements, the Licensed Publisher Agreement and/or the
Licensed Developer Agreement.

Ownership of the physical property of the book is retained by and reserved by Sony Computer
Entertainment. Alteration to or deletion, in whole or in part, of the book, its presentation, or its contents is
prohibited.

The information in the SDevTC Development Environment manual is subject to change without notice. The
content of this book is Confidential Information of Sony Computer Entertainment.

PlayStation and PlayStation logos are registered trademarks of Sony Computer Entertainment Inc. All other
trademarks are property of their respective owners and/or their licensors.

SDevTC Development Environment

Table of Contents

List of Figures v
List of Tables v

About This Manual vii
Changes Since Last Release vii
Related Documentation vii
Contents of Issue Diskette vii
Developer Reference Series viii
Typographic Conventions ix
Developer Support ix

Chapter 1: PC InstallationChapter 1: PC InstallationChapter 1: PC InstallationChapter 1: PC Installation
Overview 1–3
Installation Check List 1–3
Installing the PC Interface 1–3
Installing the PC Software 1–4
Checking Installation 1–7

Chapter 2: Using CCPSXChapter 2: Using CCPSXChapter 2: Using CCPSXChapter 2: Using CCPSX
Overview 2–3
Command Line Syntax 2–3
Environmental Variables 2–3
Source Files 2–4
Option Switches 2–4

Chapter 3: The ASMPSX AssemblerChapter 3: The ASMPSX AssemblerChapter 3: The ASMPSX AssemblerChapter 3: The ASMPSX Assembler
Overview 3–3
The Assembler Command Line Syntax 3–3
Running with Brief 3–5
Assembly and Target Errors 3–5

Chapter 4: Syntax of Assembler StatementsChapter 4: Syntax of Assembler StatementsChapter 4: Syntax of Assembler StatementsChapter 4: Syntax of Assembler Statements
Overview 4–3
Statement Format 4–3
Name and Label Format 4–3
Assembler Constants 4–4
Assembler Functions 4–5
Assembler Operators 4–6

Chapter 5: General Assembler DirectivesChapter 5: General Assembler DirectivesChapter 5: General Assembler DirectivesChapter 5: General Assembler Directives
Overview 5–3
Assignment Directives 5–3
Data Definition 5–13
Controlling Program Execution 5–20
Include Files 5–24
Controlling Assembly 5–30
Target-Related Directive 5–37

Chapter 6: MacrosChapter 6: MacrosChapter 6: MacrosChapter 6: Macros
Overview 6–3
Macro Parameters 6–3

Chapter 7: String Manipulation FunctionsChapter 7: String Manipulation FunctionsChapter 7: String Manipulation FunctionsChapter 7: String Manipulation Functions
Overview 7–3

Chapter 8: Local LabelsChapter 8: Local LabelsChapter 8: Local LabelsChapter 8: Local Labels
Overview 8–3
Local Label Syntax and Scope 8–3

iv Table of Contents

SDevTC Development Environment

Chapter 9: Structuring the ProgramChapter 9: Structuring the ProgramChapter 9: Structuring the ProgramChapter 9: Structuring the Program
Overview 9–3
The GROUP Directive 9–4

Chapter 10: Options, Listings and ErrorsChapter 10: Options, Listings and ErrorsChapter 10: Options, Listings and ErrorsChapter 10: Options, Listings and Errors
Overview 10–3
The OPT Directive 10–4
Assembler Options 10–4

Chapter 11: The Debugger DBUGPSXChapter 11: The Debugger DBUGPSXChapter 11: The Debugger DBUGPSXChapter 11: The Debugger DBUGPSX
Overview 11–3
Command Line Syntax 11–3
Configuration Files 11–4
Activity Windows 11–5
General Debugger Usage 11–7
Keyboard Options 11–9

Chapter 12: The Debug Stub FunctionsChapter 12: The Debug Stub FunctionsChapter 12: The Debug Stub FunctionsChapter 12: The Debug Stub Functions
Overview 12–3
Assembly Language Facilities 12–3
The ‘C’ Library Functions 12–5

Chapter 13: The PSYLINK LinkerChapter 13: The PSYLINK LinkerChapter 13: The PSYLINK LinkerChapter 13: The PSYLINK Linker
Overview 13–3
Command Line Syntax 13–3
Linker Command Files 13–4

Chapter 14: The LibrarianChapter 14: The LibrarianChapter 14: The LibrarianChapter 14: The Librarian
Overview 14–3
PSYLIB Command Line Syntax 14–3
Using the Library Feature 14–4

Chapter 15: The PSYMAKE UtilityChapter 15: The PSYMAKE UtilityChapter 15: The PSYMAKE UtilityChapter 15: The PSYMAKE Utility
Overview 15–3
PSYMAKE Command Line Syntax 15–3
Format of the Makefile 15–3

Chapter 16: SDevTC Debugger for Windows 95Chapter 16: SDevTC Debugger for Windows 95Chapter 16: SDevTC Debugger for Windows 95Chapter 16: SDevTC Debugger for Windows 95
Overview 16–3
Projects 16–3
Views 16–3
Color Schemes 16–3
Files 16–3
Dynamic Update 16–4
Chapter Contents 16–4
On-line Help Available For The Debugger 16–5
Installing The Debugger 16–5
Launching The Debugger 16–9
The SDevTC File Server 16–10
Connecting The Target and Unit 16–11
SDevTC Project Management 16–12
SDevTC Debugger Productivity Features 16–17
SDevTC Views 16–18
Working With Panes 16–21
Debugging Your Program 16–36
Closing the Debugger 16–43

Table of Contents v

SDevTC Development Environment

Appendix A: Error MessagesAppendix A: Error MessagesAppendix A: Error MessagesAppendix A: Error Messages
Overview A–3
Error Message Format A–3
Assembler Error Messages A–3
Psylink Error Messages A–13
Psylib Error Messages A–17

IndexIndexIndexIndex

List of Figures

Figure 1-1: SDevTC Interface Board 1–4
Figure 1-2: Directory Structure of the PSX System Software 1–5
Figure 16-1: DEX Board Settings Dialog Box 16–7
Figure 16-2: SCSI Card Settings Dialog Box 16–8
Figure 16-3: File Server Message Window 16–10
Figure 16-4: Communication Error Dialog Box 16–10
Figure 16-5: Unit Button 16–11
Figure 16-6: Binary File Properties Dialog Box 16–14
Figure 16-7: Default View 16–19
Figure 16-8: Set Default Colours Dialog Box 16–21
Figure 16-9: Memory Pane Display 16–24
Figure 16-10: Registers Pane Display 16–25
Figure 16-11: Disassembly Pane Display 16–26
Figure 16-12: Source Pane Display 16–27
Figure 16-13: Local Pane Display 16–28
Figure 16-14: Watch Pane Display 16–29
Figure 16-15: Displayed Structures For Pointer Address 16–31
Figure 16-16: Amended Structures After Pointer Assigned New Variable 16–31
Figure 16-17: Add Watch Dialog Box 16–32
Figure 16-18: Symbol Selection Dialog Box 16–33
Figure 16-19: Multiple Symbol Selection Dialog Box 16–34
Figure 16-20: Update Rate Dialog Box 16–36
Figure 16-21: Edit Breakpoint Dialog Box 16–37
Figure 16-22: Go To Expression Dialog Box 16–40

List of Tables

Table 4-1: ASMPSX Assembler Expression Operators 4–6
Table 4-2: Hierarchy Table 4–7
Table 11-1: DBUGPSX Options 11–9
Table 11-2: DBugPSX Menu Options 11–12
Table 12-1: Function Codes 12–3
Table 13-1: PSYLINK Switches 13–3
Table 16-1: Debugger Hot Keys 16–17

vi Table of Contents

SDevTC Development Environment

SDevTC Development Environment

About This Manual

This manual is the latest release of instructional material relating to the Standard Development Tool Chain
(SDevTC) for the PlayStation® as of Run-Time Library release 4.3. The purpose of this manual is to
describe the SDevTC (formerly "Psy-Q") Development Environment for PlayStation software development.

Changes Since Last Release

This manual was originally written in 1995 as a guide to the first development boards for the PlayStation
console. It was updated in 1996. Since that time, the hardware has changed significantly, and the software
interface has also changed. Please note the following changes to this manual:

Updated Section Description

Ch. 1: PC Installation This chapter contains legacy instructions for the installation of
discontinued hardware (the Psy-Q development board) and
software (PSYBIOS.COM). You can ignore this chapter and use
the following documents instead:
• DTL-H2500 Installation Manual. . . . If you are installing the
hardware and software for the DTL-H2500, use this manual,
which is supplied with your DTL-H2500 board. A copy of the
manual can be found on the Technical Reference CD in
\DEVREFS\DTLH2500.
• Readme First. If you own a DTL-H2700, refer to the "Readme
First" document supplied with your DTL-H2700 board.

Ch. 2: Using CCPSX In the section "Environmental Variables", the variable SN_PATH
has been added. The installation manuals mentioned above
contain the correct set of environment variables.

Related Documentation

This manual should be read in conjunction with the PlayStation Developer Reference Series.

Note:Note:Note:Note: The Developer Support Website posts current developments regarding the Libraries and also
provides notice of future documentation releases and upgrades.

Contents of Issue Diskette

File Description

ASMPSX.EXE R3000 assembler (SDevTC syntax)
ASPSX.EXE R3000 assembler (implements a subset of MIPS

compatible syntax, as output by ‘C’ compilers)
CCPSX.EXE A generic control program capable of controlling

the compiler also supplied with the system
DBUGPSX.EXE R3000 Debugger
PSYLINK.EXE SDevTC Linker
PSYLIB.EXE SDevTC Librarian
RUN.EXE Standalone executable/binary downloader
PSYMAKE.COM SDevTC Make Utility
PSYBIOS.COM SDevTC TSR BIOS extensions for PC host

viii About This Manual

SDevTC Development Environment

Depending on the issue and version, the following files may also be included:

File Description

MAKEFILE.MAK Sample makefile
PSYQ.CB Brief macros source
PSYQ.CM Compiled Brief macros
xxxx.ICO ICON Files, to aid installation of SDevTC under

Windows

Developer Reference Series

This manual is part of the Developer Reference Series, a series of technical reference volumes covering all
aspects of PlayStation development. The complete series is listed below:

Manual Description

PlayStation Hardware Describes the PlayStation hardware architecture
and overviews its subsystems.

PlayStation Operating System Describes the PlayStation operating system and
related programming fundamentals.

Run-Time Library Overview Describes the structure and purpose of the
run-time libraries provided for PlayStation
software development.

Run-Time Library Reference Defines all available PlayStation run-time library
functions, macros and structures.

Inline Programming Reference Describes in-line programming using DMPSX,
GTE inline macro and GTE register information.

SDevTC Development Environment Describes the SDevTC (formerly "Psy-Q")
Development Environment for PlayStation
software development.

3D Graphics Tools Describes how to use the PlayStation 3D
Graphics Tools, including the animation and
material editors.

Sprite Editor Describes the Sprite Editor tool for creating
sprite data and background picture
components.

Sound Artist Tool Provides installation and operation instructions
for the DTL-H800 Sound Artist Board and
explains how to use the Sound Artist Tool
software.

File Formats Describes all native PlayStation data formats.
Data Conversion Utilities Describes all available PlayStation data

conversion utilities, including both stand-alone
and plug-in programs.

CD Emulator Provides installation and operation instructions
for the CD Emulator subsystem and related
software.

CD-ROM Generator Describes how to use the CD-ROM Generator
software to write CD-R discs.

Performance Analyzer User Guide Provides general instructions for using the
Performance Analyzer software.

About This Manual ix

SDevTC Development Environment

Performance Analyzer Technical Reference Describes how to measure software
performance and interpret the results using the
Performance Analyzer.

DTL-H2000 Installation and Operation Provides installation and operation instructions
for the DTL-H2000 Development System.

DTL-H2500/2700 Installation and Operation Provides installation and operation instructions
for the DTL-H2500/H2700 Development
Systems.

Typographic Conventions

Certain Typographic Conventions are used through out this manual to clarify the meaning of the text. The
following conventions apply to all narrative text except for structure and function descriptions:

Convention Meaning

courier Indicates literal program code.

Bold Indicates a document, chapter or section title.

The following conventions apply within structure and function descriptions only:

Convention Meaning

Medium Bold Denotes structure or function types and names.

Italic Denotes function arguments and structure members.

Developer Support

Sony Computer Entertainment America (SCEA)Sony Computer Entertainment America (SCEA)Sony Computer Entertainment America (SCEA)Sony Computer Entertainment America (SCEA)

SCEA developer support is available to licensees in North America only. You may obtain developer support
or additional copies of this documentation by contacting the following addresses:

Order Information Developer Support

In North AmericaIn North AmericaIn North AmericaIn North America In North AmericaIn North AmericaIn North AmericaIn North America
Attn: Developer Tools Coordinator E-mail: DevTech_Support@playstation.sony.com
Sony Computer Entertainment America Web: http://www.scea.sony.com/dev
919 East Hillsdale Blvd., 2nd floor Developer Support Hotline: (650) 655-8181
Foster City, CA 94404 (Call Monday through Friday, 8 a.m. to 5 p.m.,
Tel: (650) 655-8000 PST/PDT)

Sony Computer Entertainment Europe (SCEE)Sony Computer Entertainment Europe (SCEE)Sony Computer Entertainment Europe (SCEE)Sony Computer Entertainment Europe (SCEE)

SCEE developer support is available to licensees in Europe only. You may obtain developer support or
additional copies of this documentation by contacting the following addresses:

Order Information Developer Support

In EuropeIn EuropeIn EuropeIn Europe In EuropeIn EuropeIn EuropeIn Europe
Attn: Production Coordinator E-mail: dev_support@playstation.co.uk
Sony Computer Entertainment Europe Web: https://www-s.playstation.co.uk
Waverley House Developer Support Hotline:
7-12 Noel Street +44 (0) 171 447 1680
London W1V 4HH (Call Monday through Friday, 9 a.m. to 6 p.m.,
Tel: +44 (0) 171 447 1600 GMT or BST/BDT)

http://www.scea.sony.com/dev
https://www-s.playstation.co.uk

x About This Manual

SDevTC Development Environment

SDevTC Development Environment

Chapter 1:
PC Installation

1–2 PC Installation

SDevTC Development Environment

PC Installation 1–3

SDevTC Development Environment

Overview

The SDevTC development system consists of the following physical components:

• PC board
• Security dongle
• Connecting cable
• PC driver and BIOS extensions
• SDevTC executable files

Accompanying this are:

• A ‘C’ and ‘C’++ compiler
• The associated library and header files

Installation is therefore a relatively straightforward procedure and is described in this chapter under the
following headings:

• Installation check list
• Installing the PC interface
• Installing the PC software
• PSYBIOS.COM
• Checking installation

Installation Check List

Check the configuration of the SDevTC PC board and install it in the host PC (see the Installing the PC
Interface section in this chapter).

Connect the PC to the PS-X target machine with the SCSI cable provided.

Install the software provided with this version of SDevTC and alter the host PC’s start up files (see the
Installing the PC Software section in this chapter).

Insert the security dongle into the parallel (printer) port on the host PC.

Note:Note:Note:Note: The security dongle must NOT be inserted into the connector on the SDevTC board provided or
serious damage will result.

If required some simple checks may be performed to verify installation (see the Checking Installation section
in this chapter).

Installing the PC Interface

The SDevTC PC interface board should be fitted into an empty 16-bit slot in the host PC. The host must be
an IBM PC-AT or compatible, running MSDOS version 3.1 or higher.

If no 16-bit slot is available, the board can be fitted into an 8-bit slot however this causes some degradation
in performance.

Caution must be taken when handling the board. Touch the metal casing of the computer immediately
before first touching the board and do not touch any connections on the board.

Prior to fitting, the 5 sets of jumpers on the board (see the following diagram of the SDevTC interface
board) should be checked and configured as required. It is likely that the default (factory) settings will
suffice. The default settings have been chosen so that the possibility of contention with other internal

1–4 PC Installation

SDevTC Development Environment

boards is minimized. Nevertheless, care should be taken that settings on the SDevTC board do not conflict
with any other card in the system. The meaning of the on-board jumpers is given below (the jumper names
match those in the diagram).

Figure 1-1: SDevTC Interface Board

The On-Board Jumpers

J1 Select DRQ channel.

J2 Select DACK channel.

For J1 and J2, left to right jumper positions represent channels: 7, 6, 5. The factory setting is 7,
although Adaptec SCSI defaults to 5. Both J1 and J2 must be set to the same channel.

J3 Selects IRQ number.

From left to right, these are: 15,12,11,10,7,5.

The factory setting is 15.

J4 Selects the base port address.

From left to right, these are: 300, 308, 310, 318, 380, 388, 390, 398 (hex).

The factory setting is 308.

J5 The bottom 3 jumpers are the SCSI ID.

The factory setting is 7.

The top three jumpers are reserved.

Installing the PC Software

The SDevTC issue diskette contains the following:

• The Assembler
• The Linker
• The Debugger
• The PC Driver
• Other target-specific BIOS extensions
• Windows accessories

PC Installation 1–5

SDevTC Development Environment

The GNU ‘C’ and GNU ‘C++’ issue disks currently provided with SDevTC contain the following:

• The ‘C’ source code compiler
• The ‘C++’ source code compiler
• The GNU compiler manuals
• The Free Software Foundation public license agreement

The PSX libraries diskette contains:

• The ‘C’ libraries
• Their associated header files

n.b. C++ libraries are not currently supplied

Installing the SDevTC Development Software and the Compilers

To install the PSX system software onto your hard disk, execute the following commands.

Assuming that your floppy disk drive is drive A:, and you are installing onto drive C:, your hard disk.

c:
cd\
a:install a: c:

Then follow the on-screen prompts for instructions.

This will create the following directory structure on your PC hard disk:

Figure 1-2: Directory Structure of the PSX System Software

Please adjust the PSYBIOS line added to your autoexec.bat if you have your SDevTC PC board
configured differently (refer to manual for more details).

See CCPSX.TXT in the PSYQ directory for further details of environment variables.

You will then have to reboot your PC for these modifications to become effective.

You must have the security dongle plugged into the PC parallel port in order to run the SDevTC Assembler
or debugger.

Note:Note:Note:Note: Do not plug the security dongle into the SDevTC SCSI port. This will cause damage to the SDevTC
system and your PC.

The chapter on the CCPSX control program gives limited information on using a compiler. The full
documentation for use of the GNU ‘C’ compiler can be found on the GNU ‘C’ documentation disk.

1–6 PC Installation

SDevTC Development Environment

If you are intending to use the ‘C’ compiler add the following line to your AUTOEXEC.BAT file.

set GO32TMP=c:/

This will cause the gnu compiler to store any temporary files it creates in the root of your drive C. If this is
not appropriate for your machine then modify it as necessary.

If your PC does not have a floating point coprocessor then add the following line as well.

set GO32=emu c:/compiler/emu387

Running from Windows

The SDevTC Development system can readily be launched from within Windows, by performing the
following:

• Create a new program group using the NEW option in the FILE menu of PROGRAM MANAGER.

• Create .PIF files, using the PIF Editor, to allow programs to run efficiently in a DOS window.

• Create new program items, again using the NEW option, for each SDevTC facility to be run under
Windows.

PSYBIOS.COM

Description

PSYBIOS.COM is a TSR (Terminate and Stay Resident) program, that acts as a driver for the SDevTC
interface board installed in the host PC.

Syntax

PSYBIOS [options]
where each option is preceded by a forward slash (/) and separated by spaces.

Options

/a Card address Set card address: 300, 308, 310, 318, 380, 388, 390, 398.

/b Size Specify file transfer buffer size: 2 to 32 (in kilobytes).

/d Channel Specify DMA channel: 5,6,7;0=off.

/i Intnum Specify IRQ number: 5,7,10,11,12,15;0=off.

/s Id Specify SCSI: 0 to 7.

/8 Run in 8 bit slot mode.

Remarks

Normally PSYBIOS.COM is loaded in the AUTOEXEC.BAT. It can safely be loaded high to free conventional
memory.

If PSYBIOS is run again with no options, the current image will be removed from memory. This is useful if
you wish to change the options without rebooting the PC.

If the DMA number is not specified the BIOS will work without DMA however it will be slower.

The BIOS can drive the interface in 8-bit mode however this is the slowest mode of operation for the
interface.

The buffer size option (/b) sets the size of the buffer used when the target machine accesses files on PC.
A larger buffer will increase the speed of these accesses however more PC memory will be consumed.

PC Installation 1–7

SDevTC Development Environment

Examples
PSYBIOS /a308 /d7 /i15

Start the driver, using card address 308, DMA channel 7, interrupt vector 15.

This command would be correct for the default jumper settings.

Checking Installation

Checking the Host-Target Connection

To check the operation of host-target connection complete the following:

1. Load the PC board driver by typing, typically:

PSYBIOS /a308 /d7 /i15

Note:Note:Note:Note: This command will work only for the default factory board settings and should not be entered if
PSYBIOS has been loaded in AUTOEXEC.BAT. (see the PSBIOS.COM section in this chapter).

2. Switch on the target console.

3. Run the program RUN.EXE, without parameters, to verify the link to the target adapter (see Download
Utility RUN.EXE on page 3–6).

If RUN correctly identifies the target, the basic setup of your SDevTC system is correct.

Checking the Operation of the Security Dongle

Note:Note:Note:Note: Do not plug the security dongle into the SDevTC SCSI port.

You must have the security dongle plugged into the PC parallel port in order to run the SDevTC Assembler
or debugger or the compiler. To test its operation, type the command:

DBUGPSX ? <return>

This should print a list of the valid switch. If you see the message:

Software Data Key not present

your dongle has not been installed properly. If you see the message:

Printer Port Loaded, or BadNetwork Communications, Check Setup

your particular PC is not supplying enough power to your printer port to operate the security dongle.
To resolve this problem you should contact your support representative.

1–8 PC Installation

SDevTC Development Environment

SDevTC Development Environment

Chapter 2:
Using CCPSX

2–2 Using CCPSX

SDevTC Development Environment

Using CCPSX 2–3

SDevTC Development Environment

Overview

CCPSX is a generic control program that accepts a list of source files and option switches, then calls a
C++ pre-processor, C pre-processor, C3, assembler and/or linker, as appropriate, to produce the required
output. It is discussed in the following sections:

• Command Line Syntax
• Environment Variables
• Source Files
• Option Switches

For full information on the compiler supplied with your system please see the files on the compiler
documentation disk.

To download and run .CPE files on the PSX target use RUN.EXE. (see Download Utility RUN.EXE section
on page 3–6).

Command Line Syntax

The CCPSX command line consists of a sequence of source files and control switches. Control switches
are prefixed with a ‘- ’ sign. For example:

ccpsx -c main.c

Note:Note:Note:Note: The case of alphabetical switches is important. -O does not have the same effect as -o.

Long command lines can be stored in control files. By using an ‘@’ sign in front of the control file name the
contents of the control file can be embedded in the command line. For example:

ccpsx @main.cf -o main

This will embed the contents of main.cf in the command line before the -o option. (Makefiles are a more
elegant way of organizing the whole compilation process (see Chapter 15, The PSYMAKE Utility).

The contents of the control file can be split across several lines without the need to use any special
characters. An end of line character in a control file is treated as a space. You can specify as many control
files as you want on the command line and a control file can even reference another control file.

Environmental Variables

CCPSX will search for various environment variables to specify where the files it requires can be found.
These environment variables should be set up by your AUTOEXEC.BAT so that the required variables are
always set up each time you boot your computer (see the Installing the PC Software section on page 1–4).

The environment variables are:

COMPILER_PATH This specifies the path to the directory where the compiler executable files are
stored. CCPSX will look for the files CPPPSX.EXE, CC1PSX.EXE and
CPLUSPSX.EXE in this directory.

C_INCLUDE_PATH This specifies the path to the directory where the standard ‘C’ and ‘C++’ header
files are stored. This is the directory that is searched when a include statement
specifies the file name in angle brackets (e.g., include <stdio.h>)

LIBRARY_PATH This specifies the path to the directory where the standard ‘C’ and ‘C++’ library
files are stored.

2–4 Using CCPSX

SDevTC Development Environment

TMPDIR This specifies the path to a directory where temporary files are created during
compilation.

SN_PATH This specifies the path to the directory where the SDevTC executable files are
stored (PSYLINK.EXE, etc).

For example the environment variables could be set as follows:

set COMPILER_PATH=c:/compiler
set PSYQ_PATH=c:/psyq
set C_INCLUDE_PATH=c:/psx/include
set LIBRARY_PATH=c:/psx/lib
set TMPDIR=c:/
set SN_PATH=c:/pssn/bin

Note:Note:Note:Note: The slashes in the paths may be either forwards or backwards (UNIX or DOS syntax).

Source Files

The specified source files can be either C or assembler source files or object files. CCPSX decides how to
deal with a source file based on the files extension. The following table describes how each file extension is
processed:

.C Pass through C pre-processor, C compiler, Assembler, Linker

.I Pass through C compiler, Assembler, Linker

.CC Pass through C pre-processor, C++ compiler, Assembler, Linker

.CPP Pass through C pre-processor, C++ compiler, Assembler, Linker

.II Pass through C++ compiler, Assembler, Linker

.IPP Pass through C++ compiler, Assembler, Linker

.ASM Pass through C pre-processor, Assembler, Linker

.S Pass through Assembler, Linker

other Pass through Linker

Remarks

The DOS file system is not case sensitive and so the case of the extension has no effect.

Various command line switches can stop processing at any stage eliminating linking, assembling or
compiling.

The -x option can be used to override the automatic selection of action based on file extension, see below
for more details.

Files with an extension that is not recognized are treated as object files and passed to the linker. This
obviously includes .OBJ files, the standard object file extension.

Several different source files, which may have different extensions, may be placed on one command line.

Option Switches

The following are the most common command line options, for further details on the compiler options see
the documentation on the compiler disk.

Note that case is important. -O is not the same as -o .

Using CCPSX 2–5

SDevTC Development Environment

Options controlling the type of output

-E Pre-process only. If no output file is specified then output is sent to the screen (standard
output).

-S Compile to assembly language. If no output file is specified then .C files are compiled to a file
with the same name but with a .S extension. ASM files are preprocessed as specified in the -E
option above.

-c Compile to object files. C files are compiled and assembled to .OBJ files. Assembler files are
just assembled. If an output file is specified then all output is sent to this file, otherwise it is sent
to a file with the same name as the original source file but with a .OBJ extension.

-Ipath Specify extra include path for pre-compiler.

If none of the options listed above are used then the linker will be called. If an output file name is specified
then the linkers output will go to this file. If no output is specified then the linkers output is written to a file
called A.OUT.

Generating Debug Info

To force the C compiler to generate the information required for debugging the command line switch -g
should be used. For example:

ccpsx -g main.c -o main

Optimization

Optimization is controlled by use of the -O switch. Various levels of optimization are possible:

-O0 No optimization (default)

-O or -O1 Standard level of optimization

-O2 Full optimization

-O3 Full optimization and function inlining

Other types of optimization may be controlled by other compiler switches. See the your compiler’s
documentation for more details.

Note: Compiling with -g and -O simultaneously can lead to strange effects during debugging as substantial
changes to the code order and variable storage can be made during optimization.

General

-W Suppress compiler and pre-processor warnings.

-DNAME

-DNAME=VALUE These options are passed to the pre-processor and predefine the symbol NAME
(to VALUE if specified) before processing begins.

-UNAME Undefines the predefined name NAME before pre-processing starts.

-v This option will cause ccpsx to print every command it is about to execute, before
executing it.

-f Compiler option

-m Machine specific option

-kanji This option will cause a special stage to be run that will allow kanji 2-character
sequences to be correctly dealt with by C compilers.

2–6 Using CCPSX

SDevTC Development Environment

Linker

The linker used is the standard SDevTC linker. The following switches are relevant to the action of the
linker:

(Options starting -X correspond to the option of the same name in the SDevTC standard linker
documentation).

-nostdlib This will suppress the automatic linking with the PSX standard libraries (libgs,
libgte, libgpu, libetc, libapi and libsn).

-l libname Include the specified library when linking.

-Xo$xxxx ORGs the linker’s output to address xxxx (hexadecimal). The default org address
is 0

-Xd When downloading the linkers output directly to the PSX, this option will prevent
the program from starting to execute until the user starts it from the debugger.

-Xb May be required when linking a particularly large program. This allows the
program to be linked but will slow down linking if it need not have been specified.

-o Specifies the destination

To send output direct to the target use. For example:

-o t0:

(The 0 in t0 is the scsi id of the target you wish to communicate to. This is normally 0 but may be any
number in the range 0 to 7)

To write output to a file:

-o filename

The file produced will normally be a .CPE file. To produce a file which is just pure binary specify the option
-Xp on the command line. The binary file produced will be based at the org address specified.

If you do not wish to use the default output then the output file should be specified with the -o option. For
example:

ccpsx main.c -o main

Will compile main.c and link the program to produce a file called MAIN as the final output.

It is possible to compile several separate programs in one command by specifying all the program names.
For example:

ccpsx -c file1.c file2.c file3.c

will compile file1.c , file2.c and file3.c to file1.obj, file2.obj and file3.obj
respectively. If an output file is specified then the output from each separate compilation will overwrite this
file each time and so only the final program to be compiled will produce any output.

To produce a symbol file for debugging purposes the name of the symbol file should follow the destination
file name, separated by a comma (and no spaces). For example,

ccpsx main.c -o main.cpe,main.sym

will send the program to MAIN.CPE and symbols to MAIN.SYM.

To produce a map file the destination map file name should follow the symbol file name, separated from it
by a comma (and no spaces). For example:

ccpsx main.c -o main.cpe,main.sym,main.map

will write a map file to MAIN.MAP.

Other standard SDevTC linker options can be specified by using -X option in the same way that /option
would be used when calling the linker directly.

Using CCPSX 2–7

SDevTC Development Environment

The linker will always set the entry point of the program to

__SN_ENTRY_POINT

This symbol is defined in the standard library file LIBSN.LIB .

2–8 Using CCPSX

SDevTC Development Environment

SDevTC Development Environment

Chapter 3:
The ASMPSX Assembler

3–2 The ASMPSX Assembler

SDevTC Development Environment

The ASMPSX Assembler 3–3

SDevTC Development Environment

Overview

The ASMPSX assembler can assemble R3000 source code at over 1 million lines per minute. Executable
image or binary object code can be downloaded by the assembler itself, to run in the target machine
immediately, or later, using the RUN utility.

This chapter discusses how to run an assembly session in the following sections:

• The Assembler Command Line Syntax
• Running With Brief
• Assembler and Target Errors
• The Download Utility RUN.EXE

Note:Note:Note:Note: The ASMPSX.EXE assembler program recognizes the standard R3000 register names such as zero,
at, v0, a0, s0, t0, k0, ra etc. It will also recognize register names r0, r1, r2.... r31 however, register names
preceded with a ‘$’ are not supported because this clashes with the hexadecimal number notation. The
ASPSX.EXE assembler does support the ‘$’ syntax for register names but does not provide SDevTC’s
extensive macro facilities or hexadecimal numbers. ASPSX.EXE is intended only for assembling code
generated by a ‘C’ compiler.

The Assembler Command Line Syntax

During the normal development cycle ASMPSX may be:

• Run in stand alone mode.
• Launched from an editing environment, such as Brief.
• Invoked as part of the Make utility (see Chapter 15, The PSYMAKE Utility)

When run independently the Assembler command line must obey the following syntax:

ASMPSX /switchlist source,object,symbols,listings,tempdata
or
ASMPSX @commandfile

If the first character on the command line following the ASMPSX command is an @ sign, the string slash (/)
following it signifies a SDevTC command file containing a list of Assembler commands. The components of
the command line are discussed below.

Command Line Switches

The assembly is controlled by inclusion of a set of command line switches, each preceded by a forward
slash (/). The /o switch introduces a string of assembler options (see Assembler Options on page 10–4) as
can be defined in the source code using the OPT directive. The available command line switches are listed
below:

/c If the listing option is on, then any code not assembled because of a conditional assembly
will be listed.

/d Sets debug mode. If the object code is sent to the target machine, do not start it.

/e n=x Assigns the value x to the symbol n.

/g Non-global symbols will be output directly to the linker object file.

/i Invokes the information window while assembling.

/j pathname Nominates a search path for Include files.

3–4 The ASMPSX Assembler

SDevTC Development Environment

/k Permits the inclusion of predefined foreign conditionals, such as IFND (see The MACROS
Directive on page 6–8).

/l Outputs a file for the Psylink Linker.

/m Expands all macros encountered.

/o options Specifies Assembler options. (see Assembler Options on page 10–4).

/p Outputs pure binary object code instead of an executable image in .CPE format (see
Download Utility RUN.EXE on page 3–6).

/w Outputs EQUATE statements to the Psylink file.

/z Outputs line numbers to the Psylink file.

/zd Generates source level debug information.

Further Components

Source The file containing the source code. If an extension is not specified, the default is .S . If this
parameter is omitted, the Assembler outputs help in the form of a list of switches.

Object The file to which object code is written. If the object code is to be sent directly to the target
machine specify a filename of Tn:, where n signifies the SCSI device number of the target.
If this parameter is omitted object code will not be produced.

Symbols The file to which symbol information is written, for use by the DBUGPSX Debugger.

Listings The file to contain listings generated by assembly.

Tempdata This parameter nominates a file to be placed on the RAM disk for faster access. If the
name is omitted the default is ASM.TMP. Note that the temporary file is always deleted
after assembly is complete.

Remarks

If any of the above parameters are omitted, the dividing comma must still be included on the command line
unless it follows the last parameter.

The Assembler run may be prematurely terminated by pressing:

Control-C

Control-Break Recognized quicker because it does not require a DOS operation to spot it.

Esc Only if the /i option has been specified to invoke the Info box. This may be
advisable with some earlier versions of Brief that are erratic following Control-C
or Control-Break .

The Assembler checks for an environment variable called ASMPSX. This can contain default options,
switches and file specifications, in the form of a command line, including terminating commas for
unspecified parameters. Defaults can be overridden in the runtime command line.

Examples

ASMPSX /zd /o w- scode,t0:,scode.sym

This command will initiate the assembly of the R3000 source code contained in a file called SCODE.S, with
the following active options:

• Source level debug information to be generated.
• Warning messages to be suppressed.
• The resultant object code to be transferred directly to the target machine, SCSI device 0.
• Symbol information to be output to a file called SCODE.SYM.
• Assembly listing to be suppressed because the listing file is missing.

The ASMPSX Assembler 3–5

SDevTC Development Environment

ASMPSX @game.pcf

This command will recognize the preceding @ sign and take its command line from a SDevTC command
file called GAME.PCF.

Running with Brief

Most programmers prefer to develop programs completely within a single, enabling environment. Future
versions of SDevTC will provide a self-contained superstructure with a built-in editor, tailored to the
requirements of the assembly and debug subsystems. For the time being however it is recommended that
programmers seeking such facilities should use Borland’s Brief editor, which is already supported by
SDevTC.

Installation in Brief

Copy the file PSYQ.CM, containing macros, into the \BRIEF\MACROS directory, or create it from source
file PSYQ.CB.

Set the BCxxx environment variable.

Set the BFLAGS environment variable, with -mpsyq appended, to force the SDevTC macro file to be
loaded on start-up.

On the next run of the Assembler or Brief, a set-up dialogue box is output, which allows defaults to be
specified for output destination, options and switches.

Because of problems in some versions of Brief following a Control-C or Control-Break , it is
recommended that the /i option is used on assembly. This will enable the Info Box, allowing Esc to be
used for premature assembly termination.

Note:Note:Note:Note: CCPSX may also be run from Brief but the appropriate macros are not presently provided.

Assembly and Target Errors

During the assembly process, errors may be generated as follows:

• By the assembler itself, as it encounters error conditions in the source code.
• By a failure during downloading of the object code.

Remarks

Appendix A gives a full list of Assembler error messages.

Errors during the download normally produce an error message, followed by an option to Retry, Bus Reset
or Abort, such as:

Target not Available
Bus not Available

Abort, Retry or Bus Reset

3–6 The ASMPSX Assembler

SDevTC Development Environment

Download Utility RUN.EXE

Description

This program downloads runable object code to the target machine.

Syntax

RUN [switches] file name [[switches] filename] ..
where switches are preceded by a forward slash (/).

Remarks

If RUN is executed without any runtime parameters the program will simply attempt to communicate with
the target adapter hardware. If successful, RUN displays the target identification, if the attempt fails an
appropriate error message is displayed.

Only CPE format files, as output by the development system, may be downloaded. Up to 8 CPE files may
be specified. If no extension is specified, .CPE is assumed. For an executable file, execution will begin as
indicated in the source code.

Multiple executable files may be specified. However, only the last executable address will apply (specified
files are read from left to right).

The following switches are available:

/h Halt target (download but do not run)

/t Use target SCSI id number

/u Use target unit number

Example
RUN SOLDIER.CPE

Downloads the executable file SOLDIER.CPE to the target machine and begins execution as indicated in
the original source code.

SDevTC Development Environment

Chapter 4:
Syntax of Assembler Statements

4–2 Syntax of Assembler Statements

SDevTC Development Environment

Syntax of Assembler Statements 4–3

SDevTC Development Environment

Overview

In order to control the running of an Assembler, source code traditionally contains a number of additional
statements and functions. These allow the programmer to direct the flow and operation of the Assembler
as each section of code is analysed and translated into a machine-readable format. Normally, the format of
Assembler statements will mirror the format of the host language, and ASMPSX follows this convention.

This chapter discusses the presentation and syntax of the ASMPSX statements as follows:

• Statement format
• Name and label format
• Assembler constants
• Assembler functions
• Assembler operators
• The RADIX directive
• The ALIAS and DISABLE directives

Statement Format

ASMPSX statements are formatted as follows:

Name or Label Directive Operand

The following syntactical rules apply:

• Individual fields are delimited by spaces or tabs

• Overlong lines can be split by adding an ampersand (&). The next line is then taken as a continuation

• Lines with an equals (=) sign as the first character are considered to be the options of a CASE directive
(see The CASE and ENDCASE Directives on page 5–33).

• Comment lines:
– Comments normally follow the operand, and start with a semi-colon.
– Lines which consist of space or tab characters are treated as comments.
– A complete line containing characters other than space or tabs is treated as a comment if it starts

with a semi-colon or asterisk.

Note:Note:Note:Note: If a character is preceded by a backslash and up arrow (\^), the corresponding control character is
substituted.

Name and Label Format

Names and labels consist of standard alpha-numeric symbols, including upper-case letters, lower-case
letters and numeric digits, that is in the ranges:

A to Z, a to z, 0 to 9

In addition, the following characters can occur:

Colon (:) Can be used at the end of a name or label when defined, but not when
referenced.

Question Mark (?)

Underscore (_) These three characters are often used to improve the overall readability.

Dot (.)

4–4 Syntax of Assembler Statements

SDevTC Development Environment

At sign (@) Indicates the start of a local label (see Chapter 8, Local Labels). Note that by using
the Assembler option /ln , the local label symbol can be changed to a character
other than @.

The following usage rules apply throughout:

• Numeric digits and question marks must not be the first character of a name

• Labels normally start in column 1 however if they start elsewhere there must be no characters
preceding the name, except space or tab and the last character must be a colon

• If a problem in interpretation is caused by the inclusion of a non-alphanumeric character in a name or
label, that character can be replaced by a backslash or the entire name or label surrounded by
brackets

Assembler Constants

The ASMPSX Assembler supports the following constant types:

Character Constants

A character string enclosed in quote marks is a character constant and is evaluated as its ASCII value.
Character constants may contain up to 4 characters, to give a 32-bit value thus:

“A” = 65
“AB” = (65*256)+66 = 16706
“ABC” = (65*65536) + (66*256)+67 = 4276803
“ABCD” = (65*16777216) + (66*65536) + (67*256)+68 = 1094861636

Integer Constants

Integer constants are normally evaluated as decimal, the default base, unless one of the following pertains:

• The RADIX directive changes the base.

• $, as the first character of an integer signifies a Hex number, % signifies a Binary number.

• If a character is preceded by a backslasha nd up arrow (\^), the corresponding control character is
substituted.

• The AN Assembler option allows numbers to be defined as Intel and Zilog integers, that is, the number
must start with a numeric character and end with either D for Decimal, H for Hexadecimal or B for
Binary.

Special Constants

The following predefined constants are available in ASMPSX:

_year As a four digit number, for example 1995

_month 1=January, 12 = December

_day for example 1 = 1st day of month

_weekday 0 = Sunday, 6 = Saturday

_hours 00-23

_minutes 00-59

_seconds 00-59

Syntax of Assembler Statements 4–5

SDevTC Development Environment

* Contains the current value of the Location Counter

@ Contains the actual PC value at which the current value will be stored (see example below)

narg Contains the number of parameters in the current macro argument

__rs Contains the current value of RS counter

_filename A predefined string containing the name of the primary file undergoing assembly, that is,
the file specified on the ASMPSX command line

Time and date constants are set to the start of assembly. They are not updated during the assembly
process.

RunTime db “_hours:_minutes:&
_seconds”

This expands to the form hh:mm:ss, as follows:

RunTime db “21:8:49”

Note:Note:Note:Note: This example uses the special macro parameter \ , which is described in Chapter 6, Macros.

The current value of the Program Counter can be used as a constant. To substitute the value of the
Location Counter at the current position an asterisk (*) is used:

section Bss, g_bss
Firstbss equ *

Since * gives the address of the start of the line,

org $100
dw *,*,*

defines $100 three times.

An @, when used on its own as a constant, substitutes the value of the location counter, pointing to an
address at which the current value will be stored.

org $100
dw @,@,@

defines $100,$104,$108.

Assembler Functions

ASMPSX offers a large number functions to ease the programmer’s task. Several are common to other
assemblers. These are listed below. In addition there is a group of specialized functions, that are described
on the following pages.

def (a) Returns true if a has been defined

ref (a) Returns true if a has been referenced

type (a) Returns the data type of a

sqrt (a) Returns the square root of a

strlen (text) Returns the length of string in characters

strcmp (texta,textb) Returns true if strings match

instr ([start,]txa,txb) Locate substring a in string b

substr ([start],[end],string) Assigns the portion of string to a label

sect (a) Returns the base address of section a

offset (a) Returns the offset into section a

sectoff (a) Equivalent to offset

4–6 Syntax of Assembler Statements

SDevTC Development Environment

group (a) Returns the base address of group a

groupoff (a) Returns the offset into group a

Special Functions

filesize (“filename”) Returns the length of the specified file or -1 if it does not exist

groupsize (X) Returns the current (not final) size of group X

grouporg (X) Returns the ORG address of group X or the group in which X is defined if X is
a symbol or section name

groupend (X) Returns the end address of group X

sectend (X) Returns the end address of section X

sectsize (X) Returns the current (not final) size of section X

alignment (X) Gives the alignment of previously defined symbol X. This value depends
upon the base alignment of the section in which X is defined as follows:

Word aligned - Value in range 0-3
Halford aligned - Value in range 0-1
Byte aligned - Value always 0

Assembler Operators

The ASMPSX Assembler makes use of the following expression operators:

Table 4-1: ASMPSX Assembler Expression Operators

Symbol Type Usage Action

() Primary (a) Brackets of parenthesis
+ Unary +a a is positive
- Unary -a a is negative (see Note 1)
+ Binary a+b Increment a by b
- Binary a-b Decrement a by b
* Binary a*b Multiply a by b
/ Binary a/b Divide a by b, giving the quotient
% Binary a%b Divide a by b, giving the modulus
<< Binary a<<b Shift a to the left, b times
>> Binary a>>b Shift a to the right, b times
~ Unary ~a Logical compliment or NOT a
& Binary a&b a is logically ANDed with b
^ Binary a^b a is exclusively ORed with b
! Binary a!b a is inclusively ORed with b
| Binary a|b Acts the same as !
= Binary a=b a is equal to b
<> Binary a<>b a is unequal to b (see Note 2)
< Binary a<b a is less than b (see Note 2)
> Binary a>b a is greater than b (see Note 2)
<= Binary a<=b a is less than or equals b (see Note 2)
>= Binary a>=b a is greater than or equals b (see Note 2)

Note1:Note1:Note1:Note1: Since the ASMPSX Assembler will evaluate 32-bit expressions, the negation bit is Bit 31. Therefore
$FFFFFF and $FFFFFFF are positive hex numbers, $FFFFFFFF is a negative number.

Syntax of Assembler Statements 4–7

SDevTC Development Environment

Note2:Note2:Note2:Note2: If a comparison evaluates as true the result is returned as -1, if it evaluates as false 0 is returned.

Hierarchy of Operators

Expressions in ASMPSX are evaluated using the following precedence rules:

• Parentheses form the primary level of hierarchy and force precedence, their contents are performed
first.

• Without the aid of parentheses operators are performed in the order dictated by the hierarchy table.

• Operators with similar precedence are performed in the direction of their associativity, normally from left
to right, except unary operators.

Hierarchy Table

Table 4-2: Hierarchy Table

Operator Direction Description

() ← Primary
+ , - , ~ → Unary
<<, >> → Shift
&, ! , ^ → Logical
* , / , % → Multiplicative
+, - → Additive
>, <, <=, >= → Relational
=, <> → Equality

The RADIX Directive

Description

The ASMPSX Assembler defaults to a base of 10 for integers. This may be changed by preceding individual
numbers by the characters % or $, to change the base for that integer to binary or hex alternatively the
RADIX directive can be used to change the default base.

Syntax

RADIX newbase

Remarks

Acceptable values for the new base are in the range of 2 to 16.

Whatever the current default, the operand of the RADIX directive is evaluated to a decimal base.

The AN assembler option (see Chapter 10, Options, Listings, and Errors) will not be put into effect if the
default RADIX is greater than 10, since the signifiers B and D are used as digits in hexadecimal notation.

Example
radix 8

Sets the default base to OCTAL.

4–8 Syntax of Assembler Statements

SDevTC Development Environment

The ALIAS and DISABLE Directives

Description

These directives allow the programmer to avoid a conflict between the reserved system names of
constants and functions and the programmer’s own symbols. Symbols can be renamed by the ALIAS
directive and the original names DISABLEd, rendering them usable by the programmer.

Syntax

newname ALIAS name
DISABLE name

Remarks

Symbolic names currently known to the ASMPSX Assembler may be ALIASed and DISABLEd however
these directives must not be used to disable ASMPSX directives.

Example
_Offset alias offset

disable offset
...

_Offset dh _Offset (Lab)
offset dh *-pointer

SDevTC Development Environment

Chapter 5:
General Assembler Directives

5–2 General Assembler Directives

SDevTC Development Environment

General Assembler Directives 5–3

SDevTC Development Environment

Overview

The ASMPSX assembler provides a variety of functions and directives to control assembly of the source
code and its layout in the target machine.

This chapter documents the Assembler directives which allow the programmer to control the processes of
assembly, grouped as follows:

• Assignment directives
• Data definition
• Controlling program execution
• Controlling assembly
• Target-related directives

Assignment Directives

The directives in this section are used to assign a value to a symbolic name. The value may be a constant,
variable or string.

EQU
SET (and =)
EQUS
EQUR
Rsize
RSSET
RSRESET

5–4 General Assembler Directives

SDevTC Development Environment

The EQU Directive

Description

Assigns the result of the expression, as a constant value, to the preceding symbolic name.

Syntax

[symbol name] EQU expression

Remarks

The ASMPSX Assembler allows the assigned expression to contain forward references. If an EQU cannot
be evaluated as it is currently defined, the expression will be saved and substituted in any future references
to the equate (see NOTE below).

It is possible to include an equate at assembly time, on the Assembler command line. This is useful for
specifying major options of conditional assembly, such as test mode (see The Assembler Command Line
Syntax section on page 3–3).

Assigning a value to a symbol with EQU is absolute; an attempt at secondary assignment will produce an
error. However, it is permissible to reassign the current value to an existing symbol. Typically this occurs
when subsidiary code redefines constants already used by the master segment.

Example
Length equ 4
Width equ 8
Depth equ 12
Volume equ Length*Width*Depth
DmaHigh equ $ffff8609
DmaMid equ DmaHigh+2

Note:Note:Note:Note: List equ Lastentry-Firstentry

if Firstentry and Lastentry have not yet been defined, then

dw List+2

will be treated as

dw (Lastentry-Firstentry)+2

the equated expression is implicitly bracketed.

See also: SET and EQUS.

General Assembler Directives 5–5

SDevTC Development Environment

The SET Directive

Description

Assigns the result of the expression, as a variable, to the preceding symbolic name.

Syntax

[symbol name] SET expression
[symbol name] = expression

Remarks

SET and equals (=) are interchangeable

Values assigned by a SET directive may be reassigned at any time.

The ASMPSX Assembler does not allow the assigned expression in a SET directive to contain forward
references. If a SET cannot be evaluated as it is currently defined an error is generated.

If the symbol itself is used before it is defined, ASMPSX generates a warning and assigns it the value
determined by the preliminary pass of the Assembler.

The symbol in a SET directive does not assume the type of the operand, it is therefore better suited to
setting local values, such as in macros, rather than in code with a relative start position, such as a
SECTION construct, which may cause an error (see examples).

Examples
Loopcount set 0
GrandTotal = SubTotalA+SubTotalB
xdim set Bsize<<SC

The following example will encrypt the string passed as the macro parameter (see

5–6 General Assembler Directives

SDevTC Development Environment

The MACRO, ENDM and MEXIT Directives on page 6–6):

cbb macro string
lc = 0

rept strlen (\string)
cc substr lc+1,lc+1,\string ;extract one character into label cc

db ‘\cc’^ ($A5+lc) ;encrypt the character stored in cc
and define in memory

lc = lc+1 ;increment counter
endr ;do for all chars in string
endm

See also: EQU

General Assembler Directives 5–7

SDevTC Development Environment

The EQUS Directive

Description

Assigns a text string or a string variable to a symbol.

Syntax

[symbol name] EQUS “text”
[symbol name] EQUS “text”
[symbol name] EQUS symbol name

Remarks

Textual operands are delimited by double or single quotes. If it is required to include a double quote in the
text string, delimit with single quotes or two double quotes. Similarly, to include a single quote in the text,
delimit with double quotes or two single quotes (see examples below).

If delimiters are omitted, the Assembler assumes the operand to be the symbol name of a previously
defined string variable, the value of which is assigned to the new symbol name.

Point brackets, { and } , are special delimiters used in Macros (see Chapter 6, Macros).

Symbols equated with the EQUS directive can appear at any point in the code, including as part of another
text string. If there is the possibility of confusion with the surrounding text, a backslash (\) may be used
before and, if necessary, after the symbol name to ensure the expression is expanded correctly (see
below).

Examples

To include single quotes in a string delimited by single quotes, either change the delimiters to double
quotes, or double-up the internal single quote. Similarly, this syntax applies to double quotes as follows:

Sinquote equs ‘What’s the point?’
Sinquot2 equs “What’s the point?”

Doubquote equs “Say “”Hello”” and go”
Doubquote equs ‘Say “Hello” and go’
———
Program equs “SDevTC v 1.2”
Qtex equs “What’s the score?”

db “Remember to assemble & _filename”,0
——
z equs “123”

...
dw z+4

converts to

dw 123+4

whereas the following expression needs backslashes to be expanded correctly:

dw number\z\a

converts to

dw number123a
————————————————————————————————

SA equs ‘StartAddress’
...
dw \SA\4

5–8 General Assembler Directives

SDevTC Development Environment

converts to

dw StartAddress4

See also: EQU and SET

General Assembler Directives 5–9

SDevTC Development Environment

The EQUR Directive

Description

Defines a symbol as an alternative for a register.

Syntax

[symbol name] EQUR register name

Remarks

The major use of the EQUR directive is to improve the overall readability of the source code.

In order that the Assembler can evaluate the expression correctly, dots are not allowed as part of the
symbol name within EQUR.

Example
lw t1,RGBinds (a2)

This could be rewritten using EQURs, as follows:

Red equr t1
Green equr a2

...
lw Red,RGBinds (Green)

5–10 General Assembler Directives

SDevTC Development Environment

The Rsize Directive

Description

Assigns the value of the __RS variable to the symbol, and advances the rs counter by the number of bytes,
half words or words, specified in count.

Syntax

[symbol name] Rsize count
where size is: b Byte (8 bits)

h Word (16 bits)
w Long word (32 bits)

Remarks

This directive, together with the following two associated directives, operate on or with the ASMPSX
variable __RS, which contains the current offset.

Example
rsreset

Icon_no rb 1
Dropcode rh 1
Actcode rh 1
Actname rb 10
Objpos rw 1
Artlen rb 0

After each of the first five Rsize equates, the __RS pointer is advanced. The values for each equate are as
follows:

Icon_no 0 (set to zero by RSRESET)
Dropcode 1
Actcode 4 (Automatic Even set, advances the pointer to even

boundary)
Actname 6
Objpos 16
Artlen 20

The last rb does not advance the __RS pointer since a count of zero is equivalent to an EQUATE to the
__RS variable.

See also: RSSET and RSRESET

General Assembler Directives 5–11

SDevTC Development Environment

The RSSET Directive

Description

Assigns the specified value to the __RS variable.

Syntax

RSSET value

Remarks

This directive is normally used when the offsets are to start at a value other than zero.

See also: Rsize and RSRESET

5–12 General Assembler Directives

SDevTC Development Environment

The RSRESET Directive

Description

Sets the __RS variable to zero.

Syntax

RSRESET [value]

Remarks

Using this directive is the normal way to initialize the __RS counter at the start of a new data structure.

The optional parameter is provided for compatibility with other assemblers. If present, RSRESET behaves
like the RSSET directive.

Examples

(See the Rsize directive example.)

See also: Rsize and RSSET

General Assembler Directives 5–13

SDevTC Development Environment

Data Definition

The directives in this section are used to define data and reserve space.

Dsize
DCsize
DSsize
HEX
DATASIZE and DATA
IEEE32 and IEEE64

5–14 General Assembler Directives

SDevTC Development Environment

The Dsize Directive

Description

This directive evaluates the expressions in the operand field, and assigns the results to the preceding
symbol, in the format specified by the size parameter. Argument expressions may be numeric values,
strings or symbols.

Syntax

symbol name Dsize expression,..,expression
where size is: b Byte (8 bits)

h Half word (16 bits)
w Word (32 bits)

Remarks

Textual operands are delimited by double or single quotes. If it is required to include a double quote in the
text string, delimit with single quotes or two double quotes, similarly, to include a single quote in the text,
delimit with double quotes or two single quotes (see examples below). If delimiters are omitted, the
Assembler assumes the operand to be the symbol name of a previously defined string variable, the value of
which is assigned to the new symbol name.

If the Assembler encounters a parameter that is out-of-range, ASMPSX flags an error. The following
statements will produce errors:

db 257
db -129
dh 66000
dh -33000

Examples
Hexvals dh $80d,$a08,0,$80d,0
Coords dh -15,46
Pointers dw StartMarker,EndMarker
ErrorMes db “File Error”,0

See also: DCsize

General Assembler Directives 5–15

SDevTC Development Environment

The DCsize Directive

Description

This directive generates a block of memory, of the specified length, containing the specified value
throughout.

Syntax

DCsize length, value
where size is: b Byte (8 bits)

h Half word (16 bits)
w Word (32 bits)

Examples
dcb 256,$7F

Generates 256 bytes containing $7F.

dch 64,$FF

Generates 64 half words containing $FF.

See also: Dsize

5–16 General Assembler Directives

SDevTC Development Environment

The DSsize Directive

Description

Allocates memory to the symbol, of the specified length, and initializes it to zero.

Syntax

[symbol name] DSsize length
where size is: b Byte (8 bits)

h Half word (16 bits)
w Word (32 bits)

Remarks

If this directive is used to allocate memory in a Group/Section with the BSS attribute, the reserved area will
not be initialized (see Chapter 9, Structuring the Program).

Examples
List dsh 64

Reserves an area 64 half words long, and sets it to zero.

Buffer dsb 1024

Reserves a 1k byte area, and sets it to zero.

See also: Dsize and DCsize

General Assembler Directives 5–17

SDevTC Development Environment

The HEX Directive

Description

This directive takes a list of unsigned hex nibble pairs as an argument, which are concatenated to give
bytes. It is intended as a quick way of inputting small hex expressions.

Syntax

[symbol name] HEX hexlist

Remarks

Data stored as HEX is difficult to read, less memory-efficient and causes more work for the Assembler
therefore it is suggested that the HEX statement is only used for comparatively minor data definitions. To
load larger quantities of data, it is recommended that the data is stored in a file to be INCLUDEd as a binary
file at runtime.

Example
HexString hex 100204FF0128

is another way of writing

HexString db $10,$02,$04,$FF,$01,$28

See also: INCBIN

5–18 General Assembler Directives

SDevTC Development Environment

The DATASIZE and DATA Directives

Description

Together, these directives allow the programmer to define values between 1 and 256 bytes long (8 to 2048
bits). The size of the DATA items must first be defined by a DATASIZE directive.

Syntax

DATASIZE size
DATA value[, value...]
where value is a numeric string, in hex or decimal, optionally preceded by a minus sign.

Remarks

If a value specified in the DATA directive converts to a value greater than can be held in size specified by
DATASIZE, the ASMPSX assembler flags an error.

Example
datasize 8
...
data $123456789ABCDEF0
data -1, $FFFFFFFFFFFF

See also: IEEE32, IEEE64

General Assembler Directives 5–19

SDevTC Development Environment

The IEEE32 and IEEE64 Directives

Description

These directives allow 32- and 64-bit floating point numbers to be defined in IEEE format.

Syntax

IEEE32 fp_value
IEEE64 fp_value

Examples
ieee32 1.23,34e10;defining two floating point numbers
ieee64 123456.7654321e-2

See also: DATA and DATASIZE

5–20 General Assembler Directives

SDevTC Development Environment

Controlling Program Execution

The directives in this section are used to alter the state of the program counter and control the execution of
the Assembler.

ORG
CNOP
OBJ and OBJEND

General Assembler Directives 5–21

SDevTC Development Environment

The ORG Directive

Description

The ORG directive informs the Assembler of the location of the code in the target machine.

Syntax

ORG address
where address is a previously-defined symbol, or a hex or decimal value, optionally preceded by a question
mark (?).

Remarks

If a link file is output the ORG directive must not be used (see Chapter 9, Structuring the Program).

If the program contains SECTIONs, a single ORG is allowed, and it must precede all SECTION directives. If
the program does not utilize the SECTION construct it may contain multiple ORGs.

The ORG operand can be preceded by a question mark to indicates the amount of RAM required by the
program however the ORG ? function only works on machines with operating systems to allocate the
memory; for instance, it will work on the Amiga but not the Sega Mega Drive.

Example
org $100

Begin lw r2,8 (a0)

Program equ $4000
...
org Program

See also: OBJ, OBJEND, GROUP and SECTION

5–22 General Assembler Directives

SDevTC Development Environment

The CNOP Directive

Description

Resets the program counter to a specified offset from the specified size boundary.

Syntax

CNOP offset,size boundary

Remarks

As in code containing SECTIONs, the ASMPSX Assembler does not allow the program counter to be reset
to a size boundary greater than the alignment already set for that section. Therefore, a CNOP statement,
with a size boundary of 2, is not allowed in a section that is byte-aligned.

Example
section prime

Firstoff = 512
Firstsize = 2

...
cnop Firstoff,Firstsize

Sets the program counter to 512 bytes above the next half word boundary.

General Assembler Directives 5–23

SDevTC Development Environment

The OBJ and OBJEND Directives

Description

OBJ forces the code following it to be assembled as if it were at the specified address, although it will still
appear following on from the previous code. OBJEND terminates this process and returns to the ORG’d
address value.

Syntax

OBJ address
...
OBJEND

Remarks

The OBJ-OBJEND construct is useful for code that must be assembled at one address (for instance in a
ROM cartridge) but will be run at a different address, after being copied there.

Code blocks delimited by OBJ-OBJEND cannot be nested.

Example
org $100
dw *
dw *

obj $200
dw *
dw *
objend

dw *
dw *

The above code will generate the following sequence of words, starting at address $100:

address Value
$100 $100
$104 $104
$108 $200
$10c $204
$110 $110
$114 $114

See also: ORG

5–24 General Assembler Directives

SDevTC Development Environment

Include Files

The source code for most non-trivial programs is too large to be handled as a single file. It is normal for a
program to be constructed of subsidiary files, which are called together during the assembly process. The
directives in this section are used to collect together the separate source files and control their usage also
discussed are operators to aid the control of code to be assembled from INCLUDEd files.

INCLUDE
INCBIN
REF
DEF

General Assembler Directives 5–25

SDevTC Development Environment

The INCLUDE Directive

Description

Informs the ASMPSX assembler to draw in and process another source file before resuming the processing
of the current file.

Syntax

INCLUDE filename
where filename is the name of the source file to be processed, including drive and path identifiers (see Note
below). The filename may be surrounded by quotes but they will be ignored.

Remarks

Traditionally there will be one main file of source code which contains INCLUDEs for all the other files.

INCLUDEd files can be nested.

The /j switch can be used to specify a search path for INCLUDEd files (see The Assembler Command Line
Syntax section on page 3–3).

Example

A typical start to a program would be:

section short1
codestart j entrypoint

db _hours,_minutes
db _day,_month
dh _year

include vars1.s

section short2

include vars2.s

section code

include graph1.s
include graph2.s
include maths.s
include trees.s
include tactics.s

entrypoint li t0,8
lw a0,fred
...

Note:Note:Note:Note: Since a path name contains backslashes, the text in the operand of an INCLUDE statement may be
confused with the usage of text previously defined by an EQUS directive. To avoid this, a second backslash
may be used or the backslash may be replaced by a forward slash (solidus).

5–26 General Assembler Directives

SDevTC Development Environment

Thus,

include d:\source\levels.s

may be rewritten as

include d:\\source\\levels.s

or

include d:/source/levels.s

See also: INCBIN

General Assembler Directives 5–27

SDevTC Development Environment

The INCBIN Directive

Description

Informs the ASMPSX Assembler to draw in and process binary data held in another source file before
resuming the processing of the current file.

Syntax

symbol INCBIN filename[,start,length]
filename is the name of the source file to be processed, including drive and path identifiers (see Note1).
Optionally, the filename may be surrounded by quotes which will be ignored. start and length are optional
values, allowing selected portions of the specified file to be included (see Note2).

Remarks

This directive allows quantities of binary data to be maintained in a separate file and pulled into the main
program at assembly time. Typically, such data might be character movement strings or location co-
ordinates. The Assembler is passed no information concerning the type and layout of the incoming data
therefore labeling and modifying the INCBINed data are the responsibility of the programmer.

The /j switch can be used to specify a search path for INCLUDEd files (see The Assembler Command Line
Syntax section on page 3–3).

Example
Charmove incbin “d:\source\charmov.bin”

Note1:Note1:Note1:Note1: Since a path name contains backslashes, the text in the operand of an INCBIN statement may be
confused with the usage of text previously defined by an EQUS directive. To avoid this a second backslash
may be used or the backslash may be replaced by a forward slash (solidus).

Thus,

Charmove incbin d:\source\charmov.bin

may be rewritten as

Charmove incbin d:\\source\\charmov.bin

or

Charmove incbin d:/source/charmov.bin

Note2:Note2:Note2:Note2: The nominated file may be accessed selectively, by specifying a position in the file from which to
start reading and a length. Note that:

• If start is omitted, the INCBIN commences at the beginning of the file.
• If the length is omitted, the INCBIN continues to the end of the file.
• If both start and length are omitted, the entire file is INCBINed.

See also: INCLUDE and HEX

5–28 General Assembler Directives

SDevTC Development Environment

The REF Directive

Description

REF is a special operator to allow the programmer to determine which segments of code are to be
INCLUDEd.

Syntax

[~]REF (symbol)
The optional preceding tilde [~] is synonymous with NOT.

Remarks

REF is true if a reference has previously been encountered for the symbol in the brackets.

Example
if ref (Links)

Links lw r1,8 (a0)
...
jr ra
endif

The Links routine will be assembled if a reference to it has already been encountered.

General Assembler Directives 5–29

SDevTC Development Environment

The DEF Directive

Description

Like the REF operator, DEF is a special function. It allows the programmer to determine which segments of
code have already been INCLUDEd.

Syntax

[~]DEF (symbol)
The optional preceding tilde [~] is synonymous with NOT.

Remarks

DEF is true if the symbol in the brackets has previously been defined.

Example
if ~def (load_addr)

load_addr equ $1000
exec_addr equ $1000
reloc_addr equ $80000-$300

endif

The address equates will be assembled if load_addr has not already been defined.

5–30 General Assembler Directives

SDevTC Development Environment

Controlling Assembly

The following directives give instructions to the ASMPSX assembler during the assembly process. They
allow the programmer to select and repeat sections of code:

END
IF, ELSE, ELSEIF, ENDIF and ENDC
CASE and ENDCASE
REPT and ENDR
WHILE and ENDW
DO and UNTIL

General Assembler Directives 5–31

SDevTC Development Environment

The END Directive

Description

The END directive informs the Assembler to cease its assembly of the source code.

Syntax

END [address]

Remarks

The inclusion of this directive is mostly cosmetic since the Assembler will cease processing when the input
source code is exhausted.

The optional parameter specifies an initial address for the program (see alsoThe REGS Directive section on
page 5–37).

Example
startrel lw t0, (a0)

addu r3,r2,r1
...
jr ra
end

See also: REGS

5–32 General Assembler Directives

SDevTC Development Environment

The IF, ELSE, ELSEIF, ENDIF and ENDC Directives

Description

These conditional directives allow the programmer to select the code for assembly.

Syntax

IF [~]expression
ELSE
ELSEIF [~]expression
ENDIF
ENDC

Remarks

The ENDC and ENDIF directives are interchangeable.

If the ELSEIF directive is used without a following expression, it acts the same as an ELSE directive.

The optional tilde [~] preceding the operand expression is synonymous with NOT. Its use normally
necessitates the prudent use of brackets to preserve the sense of the expression.

Examples
if Sony1

sec_dir equ 2
elseif Target

sec_dir equ 1
else

sec_dir equ 3
endif

———————————————————————————————————
if ~usesquare

round macro
addu \1,\2,\3
endm
elseif

round macro
endm
endc

———————————————————————————————————
ldimm macro dest,imm

if (\imm>-32768)& (\imm<32768)
addiu \dest,r0,\imm
else

lui\dest, (\imm)>>16
if (\imm)&$ffff
ori \dest,\dest, (\imm)&$ffff
endif
endif
endm

See also: CASE

General Assembler Directives 5–33

SDevTC Development Environment

The CASE and ENDCASE Directives

Description

The CASE directive is used to select code in a multiple-choice situation. The CASE argument defines the
expression to be evaluated. If the argument (s) after the equals sign are true, the code that follows is
assembled. The equals-question mark case is selected if no previous case is true.

Syntax

CASE expression
=expression[,expression]
=?

ENDCASE

Remarks

In the absence of an equals-question mark (=?) case, if the existing cases are unsuccessful the case-
defined code is not assembled.

Example

The following example is similar to the first example listed under the IF directive:

Target equ Sony1
...
case Target

=Sony1
sec_dir equ 2

=Sony2
sec_dir equ 1

=? db “New Version”,0
sec_dir equ 3

endcase

See also: IF conditionals

5–34 General Assembler Directives

SDevTC Development Environment

The REPT and ENDR Directives

Description

These directives allow the programmer to repeat the code between the REPT and ENDR statements. The
number of repetitions is determined by the value of count.

Syntax

REPT count
...
ENDR

Remarks

When used in a macro, REPT is frequently associated with the NARG function.

Examples
rept 12
dh 0,0,0,0
endr

———————————————————————————————————
cbb macro string
lc = 0

rept strlen (\string)
cc substr lc+1,lc+1,\string

db “\cc”^ ($A5+lc)
lc = lc+1

endr
endm

See also: DO and WHILE

General Assembler Directives 5–35

SDevTC Development Environment

The WHILE and ENDW Directives

Description

These directives allow the programmer to repeat the code between the WHILE and ENDW statements, as
long as the expression in the operand holds true.

Syntax

WHILE expression
...
ENDW

Remarks

Currently, any string equate substitutions in the WHILE expression take place once only, when the WHILE
loop is first encountered (see NOTE below for the ramifications of this).

Example
MultP equ 16

...
Indic = MultP

while Indic>1
lw r1,term (a0)
...

Indic = Indic-1
endw

Note:Note:Note:Note: Because string equates are only evaluated at the start of the WHILE loop, the following will not work.

s equs “x”
while strlen (“\s”) < 4
db “\s”,0

s equs “\s\x”
endw

To avoid this, set a variable each time round the loop to indicate that looping should continue.

s equs “x”
looping = -1

while looping
db “\s”,0

s equs “\s\x”
looping = strlen (“\s”) < 4

endw

See also: REPT and DO

5–36 General Assembler Directives

SDevTC Development Environment

The DO and UNTIL Directives

Description

These directives allow the programmer to repeat the code between the DO and UNTIL statements, until the
specified expression becomes true.

Syntax

DO
...
UNTIL expression

Remarks

Unlike the WHILE directive, string equates in an UNTIL expression will be reevaluated each time round the
loop.

Example
MultP equ 16

...
Indic = MultP

do
lw r1,term (a0)
...

Indic = Indic-1
until Indic<=1

See also: REPT and WHILE

General Assembler Directives 5–37

SDevTC Development Environment

Target-Related Directive

The following directive allows the programmer to specify certain initial parameters in the target machine:

REGS

The REGS Directive

Description

If a CPE file is produced, or object code output is directed to the target, the REGS directive specifies the
contents of the registers, at the start of code execution.

Syntax

REGS regcode=expression[,regcode=expression]

where regcode is the mnemonic name of a register, such as r1,pc

Remarks

For relocatable code, which is specific to the target or pure binary code, this directive is not available.

Examples
regs t0=$2700
regs pc=entrypoint

In these examples, the register assigns could have been declared on one line, separated by commas.

5–38 General Assembler Directives

SDevTC Development Environment

SDevTC Development Environment

Chapter 6:
Macros

6–2 Macros

SDevTC Development Environment

Macros 6–3

SDevTC Development Environment

Overview

The ASMPSX assembler provides the programmer with extensive macro facilities. Macros allow the
programmer to assign names to complete code sequences. They may then be used in the main program
like existing assembler directives.

This chapter discusses the following topics, directives and functions:

• Macro parameters
• MACRO, ENDM and MEXIT
• SHIFT and NARG
• MACROS
• PUSHP and POPP
• PURGE
• TYPE

Macro Parameters

Parameters

Macro parameters obey the following rules:

The parameters listed on the macro invocation line may appear at any point in the code declared between
the MACRO and ENDM statements. Each parameter is introduced by a backslash (\). Where this may be
confused with text from an EQUS, a backslash may also follow the parameter.

Up to thirty two different parameters are allowed, numbered \0 to \31. \0 is a special parameter which gives
the contents of the field following a '. ' character with the macro name when it was invoked, that is, the text
after the point symbol (.). This includes not only .b , .h or .w , but also any text. For example:

zed macro
\0
endm
...
zed.nop

will generate a NOP instruction.

Instead of the \0 to \31 format, parameters can be given symbolic names by their inclusion as operands to
the MACRO directive. The preceding backslash (\) is not mandatory however if there is the possibility of
confusion with the surrounding text, a backslash may be used before the symbol name and if necessary,
after it, to ensure the expression is expanded correctly. For example:

Position macro A,B,C,Pos,Time
dh \Time* (\A*\Pos+\B*\Pos+\C*\Pos)
endm

Surrounding the operand of an invoked macro with greater than and less than signs (<...>), allows the
use of comma and space characters. For example:

Credits macro
dh \1,\2
db \3
db 0
even
endm
...

6–4 Macros

SDevTC Development Environment

Continuation Lines: when invoking a macro, it is possible that the parameter list will become overlong. As
with any directive statement, to improve readability the line can be terminated by an ampersand (&) and
continued on the next line. For example:

chstr macro
rept narg
db k_\1
shift
endr
db 0
even
endm
...

cheatstring chstr i,c,a,n,b,a,r,e,l,y,&
s,t,a,n,d,i,t

This example will generate a labeled list of define bytes:

db k_i
db k_c
...
db k_i
db k_t
db 0

Special Parameters

There are a number of special parameter formats available in macros:

Converting integers to text: The parameters \ and \$ replace the decimal () or hex ($) value of the symbol
following them with its character representation. This technique is commonly used to access Run Date and
Time. For example:

org $1006
RunTime db “_hours:_minutes:&

_seconds”

This expands to the form hh:mm:ss, as follows

RunTime db “21:8:49”

Generating Unique Labels

The parameter \@ can be used as the last characters of a label name in a macro. When the macro is
invoked this will be expanded to an underscore followed by a decimal number, this number is increased on
each subsequent invocation to give a unique label. For example:

Slots macro
add r1,r0,r0
lw r1,\1
beq r1,r0,dun\@

next\@ addiu f3,r0,1
bgt r3,r0,next\@

dun\@
\endm
...
Slots freeob1,numslot1

Each time the Slots macro is used new labels in the form next_001 and dun_001 will be generated.

Entire Parameter

If the special parameter _ (backslash underscore) is encountered in a macro it is expanded to the
complete argument specified on the macro invocation statement. For example:

Macros 6–5

SDevTC Development Environment

All macro
db _
endm
...
All 1,2,3,4

will generate
db 1,2,3,4

Control Characters

The parameter \^x , where x denotes a control character, will generate the specified control character.

Using the Macro Label

The label heading the invocation line can be used in the macro, by specifying the first name in the symbol
list of the MACRO directive to be an asterisk (*), and substituting * for the label itself. However, the
resultant label is not defined at the current program location therefore the label remains undefined unless
the programmer gives it a value.

Extended Parameters

The ASMPSX Assembler accepts a set of elements, enclosed in curly brackets ({ }), to be passed to a
macro parameter. The NARG function and SHIFT directive can then be used to handle the list (see page 6-
7. For example:

cmd macro
cc equs {\1}

rept narg (cc)
\cc
shift cc
endr
endm

The line

cmd <nop,jr ra, nop>

for instance, will generate the following code

nop
jr ra
nop

6–6 Macros

SDevTC Development Environment

The MACRO, ENDM and MEXIT Directives

Description

A macro consists of the source lines and parameter place markers between the MACRO directive and the
ENDM. The label field is the symbolic name by which the macro is invoked. The operand allows the entry of
a string of parameter data names. When the assembler encounters a directive consisting of the label and
optional parameters, the source lines are pulled into the main program and expanded by substituting the
place markers with the invocation parameters. The expansion of the macro is stopped immediately if the
assembler encounters a MEXIT directive.

Syntax

Label MACRO [symbol,..symbol]
...
MEXIT
...
ENDM

Remarks

The invocation parameter string effectively starts at the character after the macro name, that is, the dot (.)
character. Text strings, as well as .b , .w and .l are permissible parameters (see previous section).

Control structures within macros must be complete. Structures started in the macro must finish before the
ENDM. Similarly, a structure started externally must not be terminated within the macro. To imitate a simple
control structure from another assembler a short macro might be used (see The MACROS Directive section
on page 6–8).

Examples
remove macro

dh -2,0,0
endm

The following example uses the parameter functions (see previous section)

Form macro
if strcmp (‘\1’,’0’)
dh 0
else
dh \1-FormBase
endif
endm

See also: MACROS

Macros 6–7

SDevTC Development Environment

The SHIFT Directive and NARG

Description

These directives cater for a macro having a variable parameter list as its operand. The NARG symbol is the
number of arguments on the macro invocation line; the SHIFT directive shifts all the arguments one place to
the left, losing the leftmost argument.

Syntax

directive NARG
...
SHIFT
where NARG is a reserved, predefined symbol.

Example
routes macro

rept narg
if strcmp (‘\1’,’0’)
dh 0
else
dh \1-routebase
endif
shift
endr
endm
...
routes 0,gosouth_1

This example goes through the list of parameters given to the macro and define a half word of $0000 if the
argument is zero or a 16 bit offset into the 'routebase' table of the given label.

See also: Extended parameters

6–8 Macros

SDevTC Development Environment

The MACROS Directive

Description

The MACROS directive allows the entry of a single line of code as a macro, with no associated ENDM
directive. The single line of code can be a control structure directive.

Syntax

Label MACROS
[symbol,..symbol]

Remarks

The MACROS directive may be used to stand in for a single, complex, code line. Often the short macro
allows the programmer to synthesize a directive from another assembler. Including the /k option on the
ASMPSX command line will cause several macros which emulate foreign directives to be generated.

Example
a = 0 ;a=0 do explosion

;a=1 do offset calculation
if 0

boom macros
jal explos\1
else

boom macros
lw r1,blowup-tactbase (\1)
endif

See also: MACRO

Macros 6–9

SDevTC Development Environment

The PUSHIP and POPP Directives

Description

These directives allow text to be pushed into, and then popped from, a string variable.

Syntax

PUSHP string
POPP string

Remarks

There is no requirement for the PUSHP and corresponding POPP directives to appear in the same macro.

Example
makeframe macro stksize

pushp "\stksize"
sub sp,\stksize
endm

freeframe macro
popp stksize
add sp,\stksize
endm

This means the user does not have to specify stksize when using freeframe. The user must ensure that
calls to makeframe and freeframe are balanced.

6–10 Macros

SDevTC Development Environment

The PURGE Directive

Description

The PURGE directive removes an expanded macro from the internal tables and releases the memory it
occupied.

Syntax

PURGE macroname

Remarks

If it is required to redefine a macro it is not necessary to purge it first. If an existing macro is redefined, the
original macro is purged by the Assembler.

Example
HugeM macro

dh \1
dh \2
...
dh \31
endm

HugeM para1,103,faultlevel,&
...

40,50,para31

purge HugeM

Macros 6–11

SDevTC Development Environment

The TYPE Function

Description

TYPE is a function to provide information about a symbol. It is frequently used with a macro to determine
the nature of its parameters. The value is returned as a word; the meanings of the bit settings are given
below.

Syntax

TYPE (symbol)
The reply word can be interpreted as follows:

Bit 0 Symbol has an absolute value
Bit 1 Symbol is relative to the start of the section
Bit 2 Symbol was defined using SET
Bit 3 Symbol is a macro
Bit 4 Symbol is a string equate (EQUS)
Bit 5 Symbol was defined using EQU
Bit 6 Symbol appeared in an XREF statement
Bit 7 Symbol appeared in an XDEF statement
Bit 8 Symbol is a function
Bit 9 Symbol is a group name
Bit 10 Symbol is a macro parameter
Bit 11 Symbol is a short macro (MACROS)
Bit 12 Symbol is a section name
Bit 14 Symbol is a register equate (EQUR)

6–12 Macros

SDevTC Development Environment

SDevTC Development Environment

Chapter 7:
String Manipulation Functions

7–2 String Manipulation Functions

SDevTC Development Environment

String Manipulation Functions 7–3

SDevTC Development Environment

Overview

To enhance the Macro structure, the ASMPSX Assembler includes powerful functions for string
manipulation. These enable the programmer to compare strings, examine text and prepare subsets.

This chapter covers the following string handling functions and directives:

• STRLEN
• STRCMP
• INSTR
• SUBSTR

7–4 String Manipulation Functions

SDevTC Development Environment

The STRLEN Function

Description

A function which returns the length of the text specified in the brackets.

Syntax

STRLEN (string)

Remarks

The STRLEN function is available at any point in the operand.

Example
Nummov macro

rept strlen (\1)
lw r3, (a0)
add a0,4
sw r3, (a1)
add a1,4
endr
endm
`...
Nummov “12345”

The number of characters in the string is used as the extent of the loop.

See also: STRCMP

String Manipulation Functions 7–5

SDevTC Development Environment

The STRCMP Function

Description

A function which compares two text strings in the brackets and returns true if they match. Otherwise it
returns false.

Syntax

STRCMP (string1,string2)

Remarks

When comparing two text strings the STRCMP function starts numbering the characters in the target texts
from one.

Example
Vers equ “Acs”
...

if strcmp (“\Vers”,”Sales”)
lh r3,SalInd (a0)
else
if strcmp (“\Vers”,”Acs”)
lh r3,AcInd (a0)
else
if strcmp (“\Vers”,”Test”)
lh r3,TstInd (a0)
endif
endif
endif

See also: STRLEN

7–6 String Manipulation Functions

SDevTC Development Environment

The INSTR Function

Description

This function searches a text string for a specified sub-string. If the string does not contain the sub-string
zero is returned. If the sub-string is present, the result is the location of the sub-string from the start of the
target text. There is an optional parameter specifying an alternate start point within the string.

Syntax

INSTR ([start,]string, sub-string)

Remarks

When returning the offset of a located sub-string, the INSTR function starts numbering the characters in the
target text from one.

Example
Mess equs “Demo for Sales Dept”

...
if instr (“\Mess”,”Sales”)
lh r3,SalInd (a0)
else
lh r3,AcInd (a0)
endif

See also: SUBSTR

String Manipulation Functions 7–7

SDevTC Development Environment

The SUBSTR Directive

Description

This directive assigns a value to a symbol. The value is a sub-string of a previously specified text string,
defined by the start and end parameters. The start and end parameters will default to the start and end of
the string if omitted.

Syntax

symbol SUBSTR [start],[end],string

Remarks

When assigning a sub-string to a symbol the SUBSTR directive starts numbering the characters in the
source text from one.

Examples
Message equs “A short Sample String”
Part1 substr 9,14,”\Message”
Part2 substr 16,,”\Message”
Part3 substr ,7,”\Message”
Part4 substr ,,”\Message”

where: Part1 equals Sample

Part2 equals String

Part3 equals A short

The last statement is equivalent to an EQUS assigning the whole of the original string to Part4.

cbb macro string
cc = 0

rept strlen (\string)
cc substr lc+1,lc+1,\string

db ‘\cc’^ ($A5+lc)
lc+1
endr
endm

This is an example of encryption of a string.

See also: INSTR and EQUS

7–8 String Manipulation Functions

SDevTC Development Environment

SDevTC Development Environment

Chapter 8:
Local Labels

8–2 Local Labels

SDevTC Development Environment

Local Labels 8–3

SDevTC Development Environment

Overview

As a program develops, finding label names that are both unique and definitive becomes increasingly
difficult. Using local labels eases this situation by allowing meaningful label names to be reused.

This chapter covers the following topics and directives:

• Local label syntax and scope
• MODULE and MODEND
• LOCAL

Local Label Syntax and Scope

Syntax

Local labels are preceded by a local label signifier. By default this is an @ sign however any other character
may declared by using the l option in an OPT directive or on the Assembler command line (see The
Assembler Command Line Syntax section on page 3–3).

Local label names follow the general label rules specified in Chapter 4.

Local labels are not descoped by the expansion of a macro.

Scope

The region of code within which a Local label is effective is called its scope. Outside this area the label
name can be reused. There are three methods of defining the scope of a Local Label:

• The scope of a local label is implicitly defined between two non-local labels. Setting a variable, defining
an equate or RS value does not de-scope current local labels unless the d option has been used in an OPT
directive or on the Assembler command line (see The Assembler Command Line Syntax section on page
3–3).

• The scope of a Local Label can also and more normally, be defined by the directives MODULE and
MODEND (see Chapter 8).

• To define labels (or any other symbol type) for local use in a macro the LOCAL directive can be used
(see Chapter 8).

Examples

plot2 lb r3,loc (a0)
...
subiu r3,r0,-83
bge r3,@chk1
addiu r3,r0,168
j @ret

@chk1 subiu r3,r0,83
...
jal lcolour
addiu r2,r0,r3

SetX set x+1
@ret jr ra

plot3
...

@ret jr ra

8–4 Local Labels

SDevTC Development Environment

The code above shows a typical use for Local Labels, as “place markers” within a self-contained
subroutine. The scope is defined by the non-local labels, Plot2 and Plot3 ; the SET statement does not
descope the routine. The labels @chk1 and @ret are reusable.

plot2 lb r3,loc (a0)
subiu r3,r0,-83
bge r3,@chk1
jal lcolour
bra setplot

@chk1

setplot set x+1

Plot3
...
j @chk1

In the example above, the final branch will cause an error since it is outside the scope of @chk1.

Local Labels 8–5

SDevTC Development Environment

The MODULE and MODEND Statements

Description

Code occurring after a MODULE statement and up to and including the MODEND statement is considered
to be a module. Local labels defined in a module can be reused but cannot be referenced outside the
module’s scope. A Local label defined elsewhere cannot be referenced within the current module.

Syntax

MODULE
...
MODEND

Remarks

Modules can be nested.

The MODULE statement itself is effectively a non-local label and will descope any currently active default
scoping.

Macros can contain modules or be contained in a module. A local label occurring in a module can be
referred to by a macro residing anywhere within the module. A module contained within a macro can
effectively provide labels local to that macro.

Example
Strat module

addi r1,r0,-1
j @Lab1
...

@Lab1 addi r4,r0,-1
beq r4,r0,@SetTact
...
jr ra

@SetTact module
lh r5,Tactic2 (a0)

...
@Lab1 lw r6,8 (a0)

...
beq r5,r0,@Lab1
jr ra
modend

modend

See also: LOCAL

8–6 Local Labels

SDevTC Development Environment

The LOCAL Directive

Description

The LOCAL directive is used to declare a set of macro-specific labels.

Syntax

LOCAL symbol,..,symbol

Remarks

The scope of symbols declared using the LOCAL directive is restricted to the host macro.

The LOCAL directive does not force a type on the symbol set that makes up its operand. In practice
therefore such symbols can be used as equates, string equates or any other type, as well as labels.

Example
doorpos macro

local m_door1,m_door2,doorw
jal doorw
jal doorw

m_door1 equ door_start*\1
m_door2 equ door_fin*\2

doorw ...
endm

See also: MODULE

SDevTC Development Environment

Chapter 9:
Structuring the Program

9–2 Structuring the Program

SDevTC Development Environment

Structuring the Program 9–3

SDevTC Development Environment

Overview

Normally, the organization of the memory of the target machine does not match the layout of the source
files. To create a structured target memory, as well as to create relocatable program sections, the ASMPSX
assembler uses the concept of Groups and Sections.

This chapter covers the following topics and directives:

• GROUP
• SECTION
• PUSHS and POPS
• SECT and OFFSET

9–4 Structuring the Program

SDevTC Development Environment

The GROUP Directive

Description

This directive declares a group with up to seven group attributes.

Syntax

GroupName GROUP [Attribute,..Attribute]
where an attribute is one of the following:
WORD
BSS
ORG (address)
FILE (filename)
OBJ (address)
SIZE (size)
OVER (GroupName)

Attribute Descriptions

WORD-the group may be addressed using absolute word addressing. Note that this will have an effect only
if the ow+ parameter has been used to allow optimization to occur.

Group1 group word

BSS-no initialized data to be declared in this group. For example:

Group1 group bss

ORG-sets the ORG address of the group, without reference to the other group addresses. If this attribute is
omitted, the group will be placed in memory following on from the end of the previous group. For example:

org $100
G1 group
G2 group org ($400)
G3 group

will place the groups in the sequence G1,G2,G3

FILE-outputs a group, such as an overlay, to the specified binary file, other groups will be output to the
declared file. For example:

Group1 group org ($400),file (“charov.bin”)

OBJ-sets the group’s OBJ address. Code is assembled as if it is running at the OBJ address but is placed
at the group’s ORG address. If no address is specified then the OBJ value is the same as the group’s ORG
address. For example:

Group1 group org ($400),obj ($1000)
Group2 group org ($800),obj ()

SIZE-specifies the maximum allowable size of the group. If the size exceeds the specified size, the
assembler reports an error. For example:

Group1 group size (32768)

Structuring the Program 9–5

SDevTC Development Environment

OVER-overlays this group on the specified group. Code at the start of the second group is assembled at
the same address as the start of the first group. The largest of the overlayed groups’ sizes is used as the
size of each group. Note that it is necessary to use the FILE attribute to force different overlays to be written
to different output files. For example:

Group2 group over (Group1)

See also: SECTION

9–6 Structuring the Program

SDevTC Development Environment

The SECTION Directive

Description

This directive declares a logical code section.

Syntax

SECTIONsize SectionName[,Group]
SectionName SECTIONsize [Attribute,..Attribute]
The second format is a special case, designed to allow definition of a section with group attributes (see
below for a description).

Remarks

Unless the section has been previously assigned, if the GROUP name is omitted the section will be placed
in an unnamed default group.

It is possible to define a section with group attributes. The assembler will automatically create a group with
the section name preceded by a tilde (~) and place the section in it. For example:

Sect1 section bss

defines Sect1, with the BSS attribute, in a group called ~Sect1 .

The size parameter can be b, h or w. If the parameter is omitted, the default size is word. When a size is
specified on a section directive, then alignment to that size is forced at that point. The start of the section is
aligned on a boundary based on the largest size on any of the entries to that section, in all modules in the
case of linked code.

Note that if a section is sized as byte, the EVEN directive is not allowed in the section. Note also that it is
not permitted to use the CNOP directive to realign the Program Counter to a value greater than the
alignment of the host section (see Chapter 5).

If sections are used to structure application code, only a single ORG directive, which must precede all
section definitions, can be used. Groups and Sections may have ORG attributes to position them. When
producing linkable output, no ORG directives or attributes are permitted. Sections are ordered within a
group in the sequence that the Linker encounters the section definitions.

Example
Sectionb one
db 1,2,3

section two
db 10,11,12

sectionb one
db 4,5

section two
db 13,14

Will produce the following sections and bytes

one 1, 2, 3, 4, 5
two 10, 11, 12, 0, 13, 14

See also: GROUP

Structuring the Program 9–7

SDevTC Development Environment

The PUSHS and POPS Directives

Description

These directives allow the programmer to open a new, temporary section, then return to the original
section. PUSHS saves the current section, POPS restores it.

Syntax

PUSHS
POPS

Example
plotcomp lw r3,8 (a0)

...
passdl equ *

pushs
section dolight
dw passdl
...
pops

This example shows PUSHS and POPS being used to pass system information, in the form of the location
counter, between sections.

9–8 Structuring the Program

SDevTC Development Environment

The SECT and OFFSET Functions

Description

The SECT function returns the address of the section in which the symbol in the brackets is defined. The
OFFSET function returns the location in the host section of the symbol in the brackets.

Syntax

SECT (expression)
OFFSET (expression)

Remarks

If a link is being performed, the SECT function is evaluated when it is linked. If there is no link it will be
evaluated when the second pass has finished.

Likewise, if a link is being performed, the OFFSET function is evaluated when it is linked however if there is
no link, the OFFSET will be evaluated during the first pass.

Example
dh sect (Table1)
dh sect (Table2)
dh offset (*)

SDevTC Development Environment

Chapter 10:
Options, Listings and Errors

10–2 Options, Listings and Errors

SDevTC Development Environment

Options, Listings and Errors 10–3

SDevTC Development Environment

Overview

This chapter completes the discussion of the ASMPSX Assembler and its facilities. It covers methods of
determining run-time Assembler options, producing listings and error-handling, as well as passing
information to the Linker:

• OPT
• Assembler options
• PUSHO and POPO
• LIST and NOLIST
• INFORM and FAIL
• XREF, XDEF and PUBLIC
• GLOBAL

10–4 Options, Listings and Errors

SDevTC Development Environment

The OPT Directive

Description

This directive allows Assembler options to be enabled or disabled, in the application code (see next page
for a full list of options).

Syntax

OPT option,..option

Remarks

An option is turned on and off by the character following the option code:

+ (plus sign) = On
- (minus sign) = Off

Options may also be enabled or disabled by using the /O switch on the Assembler command line (see The
Assembler Command Line Syntax section on page 3–3).

Example
opt an+,l+,e-

See also: PUSHO and POPO

Assembler Options

The following reference list shows the various options and optimizations available during assembly, with the
default settings. The options are later described in detail.

Assembler options (first of +/- specified is default)

ae+/- Enable automatic even mode

an-/+ Allow alternate number format

at+/- Allow the assembler to use the temporary register

c-/+ Case sensitivity

d-/+ De-scope local labels on equ, set, etc.

e+/- Print lines containing errors

h-/+ Automatic hazard removal (insert NOP)

l-/+ Use ‘. ’ as leading character for local labels (default ‘@’)

l<char> Make <char> the local label character (Note: you cannot use + or - as a local label)

m+/- Enable/disable macro instructions

n-/+ Insert NOP in branch delay slots

s-/+ Treat equated symbols as labels

t-/+ Automatically truncate values in db/dh/dw statements

w+/- Print warnings

ws-/+ Allow white space in operands

v-/+ Write local labels to symbol file

x-/+ Assume XREF’s are in the section they are declared in

Options, Listings and Errors 10–5

SDevTC Development Environment

Note that the Assembler optimization options are not valid for forward references.

Option Descriptions

AE-Automatic Even

When using the word and long word froms of DC, DCB, DS and RS, enabling this option forces the
program counter to the following word boundary prior to execution.

AN-Alternate Numeric

Setting this option allows the inclusion of numeric constants in Zilog or lntel format, that is, followed by H, D
or B to signify Hex, Decimal or Binary. (See also The RADIX Directive on page 4–7).

AT-Allow the Assembler to Use the Temporary Register

Within MIPS standard format code, some instructions are not actually instructions but are macros. For
example:

sw t0,fred

when assembled will produce the following:

lui at,fred>>16
sw t0,fred&$ffff (at)

which trashes the AT register. If AT- then errors will be generated when instructions like those above are
used. If AT+ then warnings are generated if the user uses the AT register.

C-Case Sensitivity

When the C option is set, the case of the letters in a label’s name is significant, for instance, SHOWSTATS,
ShowStats and showstats would all be discrete.

D-Descope Local Labels

If this option is enabled, local labels will be descoped if an EQU or SET directive is encountered.

E-Error Text Printing

If this option is enabled, the text of the line that caused an Assembler error will be printed, as well as the
host file name and the line number.

H-Automatic Hazard Removal

If there is a pipeline hazard the assembler will warn the user. If H+ then the assembler will insert a NOP into
the code. Note this does not apply to instructions following returns at the end of subroutines.

L-Local Label Signifier

In ASMPSX, local labels are signified by a preceding at sign (@). This option allows the use of the character
following the option letter as the signifier. Thus, L: would change the local label character to a colon (:). L+
and L- are special formats that toggle the character between a dot (.) and an at sign (@) respectively.

M-Enable/Disable Macro Instructions

If m- then errors will be given on macro instructions. For example the following code

li r2,$587329

will expand to the following sequence

lui r2,$58
ori r2,$7329

If m+ then

10–6 Options, Listings and Errors

SDevTC Development Environment

li r2,$587329

will generate an error.

N-Generate a NOP in Branch Delay Slots

Will automatically insert a NOP after all branch instructions.

S-Treat Equated Symbols as Labels

If enabled then disassembly will treat equates as labels rather than just values.

T-Automatic Truncation

If enabled this will cause truncation of values to the size of the defined data. For example:

db -1

will be assembled as

db $ff

W-Print Warning Messages

The Assembler identifies various instances where a warning message would be printed but assembly is
allowed to continue. Disabling the W option will suppress the reporting of warning messages.

WS-Allow White Spaces

If this option is set on, operands may contain white spaces thus the statement:

dw 1 + 2

defines a longword of value 1 with WS set off and a longword of value 3 with WS set on.

X-XREFs in Defined Section

This option set to on specifies that XREFs are assumed to be in the section in which they are defined. This
allows optimization to absolute word addressing to be performed if the section is defined with the WORD
attribute or is in a Group with the WORD attribute.

Options, Listings and Errors 10–7

SDevTC Development Environment

The PUSHO and POPO Directives

Description

The PUSHO directive saves the current state of all the assembler options, POPO restores the options to
their previous state. They are used to make a temporary alteration to the state of one or more options.

Syntax

PUSHO
POPO

Example
pusho ;save options state
opt ws+, c+ ;change options state

SetAlts = height * time
SETALTS dh 256 * SetAlts

popo ;restore previous state

See also: OPT

10–8 Options, Listings and Errors

SDevTC Development Environment

The LIST and NOLIST Directives

Description

The NOLIST directive turns off listing generation; the LIST directive may be used to turn listing on or off.

Syntax

NOLIST
LIST indicator
where indicator is a plus sign (+) or a minus sign (-).

Remarks

If a list file is nominated, either by its inclusion on the Assembler command line or in the ASMPSX
environment variable, a listing will be produced during the first pass.

(The default assembler options are set with the SET ASMPSX= command on the command line or in the
AUTOEXEC.BAT file.)

The Assembler maintains a current listing status variable which is initially set to zero. List output is only
generated when this variable is zero or positive. The listing directives affect the listing variable as follows:

NOLIST Sets it to -1

LIST With no parameter, sets it to zero

LIST + Adds 1

LIST - Subtracts 1

Example

Directive Status Listing produced

Nolist -1 No
List - -2 No
List 0 Yes
List - -1 No
List - -2 No
List + -1 No
List + 0 Yes

Note:Note:Note:Note: The Assembler automatically suppresses production of listings in the following circumstances:

• During macro expansion
• For unassembled code because of a failed conditional

These actions can be overridden by:

• Including the /M option on the Assembler command line to list expanding macros
• Including the /C option on the Assembler command line to list conditionally ignored code (see The
Assembler Command Line Syntax section on page 3–3).

Options, Listings and Errors 10–9

SDevTC Development Environment

The INFORM and FAIL Directives

Description

The INFORM directive displays an error message contained in text, which may optionally contain
parameters to be substituted by the contents of expressions after evaluation. Further Assembler action is
based upon the state of severity. The FAIL directive is a predefined statement, included for compatibility
with other assemblers. It generates an “Assembly Failed” message, and halts assembly.

Syntax

INFORM severity,text[,expressions]
FAIL

Remarks

These directives allow the programmer to display an appropriate message if an error condition which the
Assembler does not recognize is encountered.

Severity is in the range 0 to 3, with the following effects:

0: the Assembler simply displays the text

1: the Assembler displays the text and issues a warning

2: the Assembler displays the text and raises an error

3: the Assembler displays the text, raises a fatal error and halts the assembly

Text may contain the parameters %d, %h and %s. They will be substituted by the decimal, hex or string
values of those expressions that follow.

Example
TableSize equ TableEnd-TableStart
MaxTable equ 512

if TableSize>>MaxTable
inform 0,”Table starts at %h and&

is %h bytes long”,&
TableStart,TableSize

inform 3,”Table Limit Violation”
endif

10–10 Options, Listings and Errors

SDevTC Development Environment

The XDEF, XREF and PUBLIC Directives

Description

If several subprograms are being linked, to refer to symbols in a subprogram which are defined in another
subprogram, use the XDEF, XREF and PUBLIC directives.

Syntax

XDEF symbol[,symbol]
XREF symbol[,symbol]

PUBLIC on
PUBLIC off

Remarks

In the subprogram where symbols are initially defined, the XDEF directive is used to declare them as
externals.

In the subprogram that refers to the symbols, the XREF directive is used to indicate that the symbols are in
a another subprogram.

The Assembler does not completely evaluate an expression containing an XREFed symbol however
resolution will be effected by the linker.

The PUBLIC directive allows the programmer to declare a number of symbols as externals. With a
parameter of on, it tells the Assembler that all further symbols should be automatically XDEFed until a
PUBLIC off is encountered.

Examples

Subprogram A contains the following declarations:

xdef Scores,Scorers
...

The corresponding declarations in subprogram B are:

xdef PointsTable
xref Scores,Scorers
...
——

public on
Origin = MainChar
Force dh speed*origin
Rebound dh 45*angle

public off

See also: XREF, XDEF and PUBLIC (page 10–10).

Options, Listings and Errors 10–11

SDevTC Development Environment

The GLOBAL Directive

Description

The GLOBAL directive allows a symbol to be defined which will be treated as either an XDEF or an XREF. If
a symbol is defined as GLOBAL and is later defined as a label, it will be treated as an XDEF. If the symbol is
never defined, it will be treated as an XREF.

Syntax

GLOBAL symbol[,symbol]

Remarks

This is useful in header files because it allows all separately assembled subprograms to share one header
file, defining all global symbols. Any of these symbols later defined in a subprogram will be XDEFed, the
others will be treated as XREFs.

See also: XREF, XDEF and PUBLIC

10–12 Options, Listings and Errors

SDevTC Development Environment

SDevTC Development Environment

Chapter 11:
The Debugger DBUGPSX

11–2 The Debugger DBUGPSX

SDevTC Development Environment

The Debugger DBUGPSX 11–3

SDevTC Development Environment

Overview

DBUGPSX is a full source level debugger, as well as a traditional symbolic debugger. This allows source
code to be viewed, run and traced, stepped-over and breakpoints set and cleared.

The original symbolic debug facilities are all still available. A source level display will revert to a symbolic
disassembly when no source level information is available.

The following Debugger topics are discussed in this chapter:

• Command line syntax
• Configuration files
• Activity windows
• General debugger usage
• Keyboard options
• Menu options

For full operation of the debugger the pollhost function/macro should be included in the source code of the
program to be debugged (see Chapter 12).

Command Line Syntax

Syntax

DBUGPSX /switches filename filename
or
DBUGPSX ? which displays a help message.

Remarks

Filename specifies the name of a file containing symbols, produced by the using the /zd option during
assembly. If no extension is shown, a default extension of .SYM will be added. Multiple filenames are
allowed and must be separated by a space, the symbol files will then be loaded in the order specified. If
CCPSX is being used to drive the compile-assemble-link sequence then the -g option must be used to
produce symbols (see readme files on issue disks for latest options etc.). Generally when debugging,
compiler optimizations such as instruction re-ordering should not be used as this makes source level
debugging virtually impossible.

Valid Switches

/h Halts target machine when Debugger starts

/s file Overrides default configuration filename

/v exprtext Evaluates expression text and put result to standard output device

/e file[,file,file] Loads target machine with CPE file (s)

/r Specifies data screen rows in video bios

/c- Turns case sensitivity off

/c+ Turns case sensitivity on

/d Disables automatic run-to-main at C program start-up

/f$xxxxxxxx Finds line number and file for address $xxxxxxxx

/i Specifies update interval (in 1/18ths sec)

11–4 The Debugger DBUGPSX

SDevTC Development Environment

/l Sets Debug label level

/t Sets target SCSI device number (default is 0)

/u- Turns continual update mode off

/u+ Turns continual update mode on

/& expr,.. expr Lists of parameter expressions separated by commas

/m Sets the Debugger mouse sensitivity. is a number between 1 and 4, 3 is the default.
DBUGPSX drives the mouse itself. This overcomes some shortcomings exhibited by
the Microsoft mouse driver, particularly in 132 column mode

/m+ Uses the current system mouse driver; later versions of the Microsoft drivers (8
upwards) allow the mouse to be used in a DOS window

/m- Reverts to the DBUGPSX mouse driver

/R Uses alterante mnemonics in register window

Source level mode can be used if a symbol file is specified on the command line. This file contains symbols
and additional source level information produced by the /zd option in the ASMPSX assembler.

Expressions passed to the Debugger using the /& switch can be referred to in the form &0, &1, etc., where
0 means the first expression on the command line, 1 means the second.

Configuration Files

When DBUGPSX is loaded it accesses a configuration file containing information about the current
Debugger environment. The current configuration can be saved at any time during an active Debugger
session. The default filename can be overridden with an option on the command line (/s) or at run-time, so
that the most frequently used configurations are always readily available.

Configuration File Names

The normal configuration file name is DBUGPSX.C, where the first number is the target SCSI id number,
and the second number is the virtual screen. Typically therefore the configuration loaded at start-up is
DBUGPSX.C00.

If this file is not located in the current directory, the Debugger looks for a file called DBUGPSX.DF (the
default configuration file).

If that file is not located, the Debugger home directory will be searched for a file built from the target name
string. For example:

SONY_PSX.CFG

Contents of Configuration Files

A configuration file can include the following information:

• Read memory ranges
• Write memory ranges
• Video type and usage
• Label level
• Colour and mono attributes
• Tab settings
• Current window type and display position
• Breakpoints
• History details

The Debugger DBUGPSX 11–5

SDevTC Development Environment

Activity Windows

The Debugger display consists of one or more activity windows. The number of windows, the contents of
each window and the window size can all be specified at run-time. The default display consists of two
windows. The upper window normally contains a display of the registers, the lower window shows the
disassembly of the code at the current pointer.

The Debugger can run up to 10 virtual screens; each screen has its own configuration file (see previous
page). Alternate screens can be accessed by pressing Alt-n , where n is the screen number 0-9, where 0
means screen 10.

Window Types

The Register Window provides a complete view of the selected processor’s registers. Register contents
can be changed:

• By typing directly at the current cursor location
• Entering an expression (pressing the Enter key displays an expression input window)

The Disassembly Window shows the contents of the target memory as disassembled code. If a symbol file
has been loaded into the Debugger, symbol names are substituted as appropriate, according to the label
level. Breakpoints, conditions and counts can be added to any line and the code run, traced or stepped.

If the PC of the target machine is pointing at a line in the current disassembly display it is indicated by a
greater than sign (>). If a line contains a breakpoint, that line is displayed in a different colour; the breakpoint
count and expression details are shown at the end of the line.

The Hex Window displays memory in hexadecimal, either in byte, word or long word form. Like the Register
Window contents can be changed:

• By typing directly at the current cursor location
• Entering an expression for evaluation (pressing the Enter key displays an expression input window)
• Pressing + or - will increment or decrement the value at the cursor position

The Watch and Variable windows allow variables, tables and code locations to be monitored as your
program is running.

The Variable window automatically tracks the scope of your C program. As you trace though your program
and the variable scope changes, this window will always display the current local variables.

The Watch window performs a similar function for user specified expressions and is typically used to
display global variable data. You can enter all your global variables in this window by pressing Alt-G.
Specific C or Assembler expressions (global and local) can be entered at the cursor position. Entries can
also be deleted. All entries in a Watch window are saved when you exit and are restored the next time you
run the Debugger.

In both the Variable and Watch windows, pointers and arrays can be de-referenced and structures, unions
and enums can be opened up for closer examination, by placing the cursor over the relevant entry and
pressing '+' from the numeric keypad. They can be subsequently closed by pressing '-'. This will even work
for local register structures within unions within structures etc.

The Text or File Window allows a text file to be viewed directly. Note that pressing the Enter key, while the
cursor is in the File Window, allows entry of a further file name for display.

The Source Level window is an extension of the File window. Most source level key commands are the
same as for a Disassembly window.

To enter source mode, tell the File window to display program source at a particular address. The easiest
way to do this is to hit the TAB key. As in a Disassembly window, this causes the window to locate to the
current program counter address. If the Debugger has source level information for that part of your
program, it will display corresponding source code.

11–6 The Debugger DBUGPSX

SDevTC Development Environment

Alternatively, you can enter source mode by typing Alt-G (for the Goto location) and then entering the
address you wish to locate to (any expression, or Assembly language label name, or C function name, such
as main, will do fine).

Note that in Source mode, line numbers are added to the left side of the window display and the PC line is
indicated with a '>' after the line number, similar to a Disassembly window.

If you wish to view text which is truncated off the right side of the window then the window can be scrolled
to the left and right using the left and right cursor keys.

You can step, trace, run to cursor and set breakpoints in the source code in much the same way as a for
Disassembly window. The cursor in the currently active text window will track the PC during a trace. Note,
however, that unlike tracing in a Disassembly window, a trace at Source Level may trace more than one
instruction as it will trace the entire source line, which, if it is a macro or a 'C' source line, may correspond
to the execution of one or more instructions. Similarly F8 (Stepover) will step-over the entire source line,
which could be equivalent to stepping over several subroutine calls.

If you are unsure of how a Source Level operation will behave, a Disassembly window can be viewed at the
same time to determine how the operations correspond to actual processor instructions. If you attempt to
step into a C function or Assembly language subroutine for which the Debugger does not have any source
level information, then the Debugger will attempt to perform a step-over operation instead. If this is not
possible (e.g. if the code without source level information is jumped to rather than called), then the window
display will switch to Disassembly mode. The trace can be continued and when the PC returns to a region
for which there is Source information. The window will switch back to the Text display.

In order to use any of the Source Level features, you must have the necessary extra debugging information
in your Symbol File(s). If this is not present, then the Debugger will be unable to switch to Source mode and
Source Level operations will produce appropriate error messages. This information is added to the Symbol
Files by the C compiler if you add the -g switch to your CCPSX command line, or by the Assembler if you
specify the /zd switch on the ASMPSX command line.

The Symbol File normally contains the full original pathnames of all files used to build your project. When
Source Level debugging, the Debugger will attempt to load those files from the same locations. In some
cases this may not be convenient, e.g. if part of the project was built by another developer on a different
PC or on a network drive. Even if you have a copy of the appropriate Source Files you may not have them
at the same location.

To get around this you can provide the Debugger with a search patch for Source Files. Just select a
Source File window and type Alt-P. You will be prompted to enter a normal DOS search path. This search
path can contain many entries and be as long as you wish.

For example,

c:\;c:\temp\myfiles;c:\gnumips\src\common

The Debugger will first look for the file in the directory specified in the Symbol File (determined when the
project was built). If it cannot locate the file at the original location then it will search for it by name at the
following locations:

c:\filename.sym
c:\temp\myfiles\filename.sym
c:\gnumips\src\common\filename.sym

The first filename match located will be assumed to be the correct Source File.

The search path will be saved in the Debugger Configuration File when you exit the Debugger. To remove
an existing search path just specify a blank search path string.

Additional Debugger Features

Automatic Overlay SupportAutomatic Overlay SupportAutomatic Overlay SupportAutomatic Overlay Support allows the Debugger to dynamically track overlays as they are loaded into your
program and work with the Source Files and variables specific to that overlay. This requires no modification

The Debugger DBUGPSX 11–7

SDevTC Development Environment

to your Source Code. You need only to tell the Linker which files will overlay in memory. Any number of
concurrent overlays are supported over multiple memory areas. A simple overlay is included with the
SDevTC software.

Big Text ScreensBig Text ScreensBig Text ScreensBig Text Screens allow you to view as much information as possible by working in a higher text resolution.
This is achieved by putting the text screen in the required resolution before running the Debugger. At least
80x50 is recommended, but the Debugger will happily work in higher text resolutions up to 132x66. Most
modern VGA cards are capable of 132 column text modes and come with a utility to set such resolutions.
SDevTC also includes the BV.exe program which will take any screen mode and adapt it to 30, 32, 60 or
64 lines. Use the /r50 debugger command line switch if you prefer to edit at 80-25 but debug at 80x50.

Multiple Text ScreensMultiple Text ScreensMultiple Text ScreensMultiple Text Screens are available when a single 132x64 screen is not enough to display all your debug
information. Up to 10 virtual screens can be used. Switch between them by pressing Alt-n (where n is a
digit 1,2,3,4,..0). The configuration at each screen is saved when you switch, and is restored when you
switch back. These configurations are also saved when you exit the Debugger.

Name CompletionName CompletionName CompletionName Completion is provided by all prompts where C or Assembler labels are entered. Type the first few
letters of the name and press Ctrl-N. If the required label does not appear, repeat Ctrl-N to ‘toggle’ through
the alternatives. This facility also works for a name in the middle of an expression.

Prompt HistoriesPrompt HistoriesPrompt HistoriesPrompt Histories are provided to allow you to select from your history of prior entries. This information is
saved when you exit the Debugger and restored for your next debugging session.

CPU Hardware BreaksCPU Hardware BreaksCPU Hardware BreaksCPU Hardware Breaks can be used to cause the PlayStation CPU to stop when a specific memory location
is read from or written to. Hardware breaks can be accessed by typing Alt-B.

Note that syntax from either C or Assembler can be used with this facility.

In Assembler mode you will be prompted for a mask value. This mask has 1 bit to enable, therefore a mask
value of -1 ($FFFFFFFF) will be the usual value to trap one particular address.

In C mode you only need to enter the name of your C variable. The Debugger will automatically calculate
the correct address and mask value.

General Debugger Usage

The following key strokes and mouse actions allow the programmer to exercise control over the Debugger
display. A complete list of all key and menu options is given later in the chapter.

Moving between Windows

Use one of the following methods to move between Debugger windows:

• Press F1, followed by a cursor (up, down, left or right) key to point to the required window
• Press Shift, plus a cursor key
• Point at the required window with the mouse and click

Selecting the Window Type

Do one of the following to change the type of the currently selected window:

• Use the mouse to select the Set Type option from the Window menu
• Press Shift and F1

In each case, a selection window is presented. Use the mouse or the cursor keys, plus ENTER, to choose
the new type.

11–8 The Debugger DBUGPSX

SDevTC Development Environment

Resizing Windows

To change the size of a Debugger window:

• Position the cursor in the required window
• Press F2
• Use the cursor keys to move the selected window edge to the desired size
• Press the Enter key to confirm

Note that the currently selected window may be zoomed to fill the screen by pressing Control-Z. Press
again to re-present the original display

Splitting an Existing Window

To add another window to the display:

• Position the cursor in the required window
• Press F3

The new window is the same type as the source window.

Joining Two Windows

To remove a Debugger window:

• Position the cursor in the required window
• Press F4
• Use the cursor keys to select the window edge to be removed
• Press Enter to confirm

Moving the Cursor within a Window

The cursor control keys allow the repositioning of the cursor in the selected window, as follows:

Window Specific Control

Register Window: Use the four arrow keys to move between register values. The Home key positions the
cursor in the top left register field.

Watch Window: Use the four arrow keys to move between adjacent lines and characters. The Home key
positions the cursor in the top left character position.

Disassembly and Text Window: Use the up and down arrows to move the highlight bar. The Home key
moves the line under the cursor to the top of the window.

Hex Window: Use the four arrow keys to move between adjacent lines and bytes/words. The Home key
moves the byte/word under the cursor to the top left of the window.

Locking a Window

A window can be locked into displaying a specific memory region as follows:

• Pressing Alt-L, and entering an address, or an expression which evaluates to an address, in the input
box.

• Selecting the Lock option from the Window menu.
• Pressing Control-L turns the lock on and off.

A display can be locked to the expression &0; this allows the Debugger to be started with a window
pointing to an address or label specified on the command line.

The Debugger DBUGPSX 11–9

SDevTC Development Environment

If a lock expression is set but deactivated by Control-L the Debugger will start-up with the display initially
positioned at the lock address but the window start can subsequently be changed with the cursor keys,
etc., as normal.

General Mouse Usage

Clicking the left mouse button repositions the cursor to the site of the click. If the new position is in another
window, it will become the active window.

Clicking the right mouse button on a register in the Register window will open an expression input box.

Clicking the right mouse button on a memory field in the Hex window will open an expression input box.

Clicking the right mouse button on a line in the Disassembly window toggles a breakpoint.

A window can be re-sized by clicking the left mouse button on a window edge and dragging it to the new
position.

Dragging a window border to the edge of the window deletes the window.

Keyboard Options

The following table is a complete list of keyboard options, categorized by function. Many of these functions
are duplicated by menu options however such functions are shown in both lists for reference purposes.

Expressions

At many points in the session the Debugger will prompt for input, this can often take the form of an
expression for evaluation. Expressions in the Debugger follow the same rules as the Assembler (see
Chapter 4) with the following exceptions:

• Expressions may contain processor registers
• The Debugger assumes a radix of hexadecimal; to indicate a number is decimal, it should be preceded

by a sign
• Indirect addresses are indicated by square brackets []
• When the Debugger gets an indirect datum it assumes a long word. This can be overridden by using

the @ sign in place of the dot, together with b or w, following the square bracket

Prompts

Each time the Debugger requests input, the reply is stored. These stored prompts form a history, which
can be accessed (and then edited) at data entry time by using the up and down arrow keys. Note that,
when the Debugger closes the last four historic entries in each class are stored on the configuration file and
restored the next time that the Debugger is loaded.

Table of Options

Table 11-1: DBUGPSX Options

Key(s) Effect

Leaving the Debugger
Ctrl-X Exit Debugger without saving the current configuration
Alt-X Exit Debugger and save the current configuration

Window handling
F1 Move to next window

11–10 The Debugger DBUGPSX

SDevTC Development Environment

F2 Resize Window
F3 Divide Window into two
F4 Delete Window
Shift-Arrows Move to selected Window
Ctrl-Z Zoom current Window; again to restore original display
Shift-F1 Select Window type

Debug control
Ctrl-F2 Re-start paused Debugging session if using a CPE file
Esc Halt the target at first opportunity
Shift-Esc Halt the target turning off interrupts
Alt-R Restore registers from previous save
Alt-I Set the update interval: the interval is input in 18ths of a second.

Therefore 18 means once a second, 9 means twice a second, etc.
Alt-U Turn update mode on or off
F6 Run target code until the instruction under the cursor is reached
F7 Single step (steps into subroutine)
F8 Single step (steps over subroutine)

Key(s) Effect

F9 Run target code from current program location
Shift-F7 Trace traps and break instructions
Shift-F9 Run to address specified in input window
Alt-F4 Backtrace: this function provides an UNDO of the updates effected by

the latest trace (the Debugger keeps a record of about 200 instructions
depending on their content). Note that updates to certain write registers
in the target machine and memory areas designated as write only,
cannot be undone.

File accessing
< Upload specified data from the target to a named file on the PC
> Download a file to the target
Shift-F10 Load a new configuration file
Alt-S Send specified section of disassembly to a PC file

Miscellaneous
F10 Select a menu option
Alt-H Hex calculator: enter an expression to be evaluated
Alt- n Switch to virtual screen n (1-9 plus 0=10)
Alt-N Label continuation: enter first few letters from a label and press Alt-N to

find first match. Repeated Alt-N cycles through all matches
Disassembly window

Up/Down Arrows Move highlight bar
Left/Right Arrows Move display by one word
PgUp/Dn Move display by a page
Home Move display so that the highlighted line is at the top
Alt-G Go to address specified in input window
Tab Move the highlight bar to the Program Counter
Shift-Tab Make the Program Counter the same as the currently highlighted

address
Alt-L Lock the display to a specified address
Ctrl-L Turn lock on or off
Ctrl-D Disassembly memory to a PC text file

The Debugger DBUGPSX 11–11

SDevTC Development Environment

Ctrl-S Search for a particular instruction fragment (such as text, space as
separator, etc.)

Ctrl-N Continue search
Enter Mini-Assembler: displays an input box to enter a single line of source

code to be assembled and inserted at the location under the cursor

File and source windows
Tab Load appropriate source file. When in source level mode use keys as in

Disassembly window
Alt-G Locate source display to specified address
Alt-T Override default tab settings for this window

(prompts for a list of tab positions)
Ctrl-S Search for a text string
Ctrl-N Continue search
Alt-P Specify source-file search path

Breakpoints
Alt-C Enter condition for the highlighted breakpoint
Ctrl-C Enter count for the highlighted breakpoint

Key(s) Effect

F5 Turn highlighted breakpoint on or off
Shift-F5 Clear all current breakpoints
Shift-F6 Reset all current breakpoint counts

Hex Window
Arrow Move to adjacent byte/half word/word
PgUp/Dn Move display by one page
Home Move display so that currently highlighted byte/half word/word is at the

top
Alt-W Switch display between byte, half word and word
Enter Change contents of current location to the result of an expression

entered in an input window
0-9 A-F Directly change contents of highlighted location
+ Increment contents of highlighted location
- Decrement contents of highlighted location
Alt-G Go to address specified in input window
Alt-F Move display to address contained in highlighted location
Ctrl-S Search for a hex (or text if started with “ character) string

(prompts for a space-separated list of bytes/words/longs)
Ctrl-N Continue search

Register Window
Arrows Move to next register
Home Move to top left register
Enter Change contents of current register to the result of an expression

entered in an input window
0-9 A-F Directly change contents of highlighted register

Watch Window
Arrows Move to next watch expression
Home Move to top watch expression
Ins Add a new watch expression
Del Delete the highlighted watch expression
+ Opens information on the data under the cursor (structure, array etc.) or

11–12 The Debugger DBUGPSX

SDevTC Development Environment

de-references the data if it is a pointer
- Closes expanded information
Tab Changes the result display format of a C expression under the cursor
Right/Left Increments/Decrements array index under the cursor (currently only if not

expanded with +)
Var Window

Up/Down Move to next watch expression
Home Move to top watch expression
Ins Add a new watch expression
Del Delete the highlighted watch expression
+ Opens information on the data under the cursor (structure, array etc.), or

de-references the data if it is a pointer
- Closes expanded information
Tab Changes the result display format of a C expression under the cursor
Right/Left Increments/Decrements array index under the cursor (currently only if not

expanded with +)

Key(s) Effect

< > (Also comma and dot) Crawls up and down the stack, adjusting the
scope of current debugger display to that of calling functions. Top level is
a ‘C’ callstack display

‘C’ Callstack Display

> (Also dot) Return to current scope
Enter Display the variables of the scope under the cursor.

Menu Options

The DBUGPSX menu affords easy mouse access to the commonest Debugger functions. Note that, if no
mouse is available, the Menu can still be accessed by pressing F10.

Table 11-2: DBugPSX Menu Options

Option Effect

FILE menu
Reload Reload the last executable file
Download Download a file to the target
Upload Upload specified data from the target to a named file on the PC
Disassemble Send specified section of disassembly to a named PC file
Exit to DOS Exit to DOS shell, type EXIT to return to the Debugger
Exit Debugger Exit the Debugger and save the current configuration

RUN menu
Go Run target code from the current Program Counter
Stop Halt the target machine, turning off all interrupts
To Address Run to address, specified in input window
Backtrace This function provides an UNDO of the updates effected by the latest trace (the

Debugger keeps a record of about 200 instructions, depending on their
content). Note that updates to certain write registers in the target machine and
memory areas designated as write only, cannot be undone

WINDOW menu
Set Type Select window type
Lock Lock the display to the address entered in an input window

The Debugger DBUGPSX 11–13

SDevTC Development Environment

Print Output screen to system printer
Set Tabs Enter up to 8 tab positions, in decimal, separated by spaces. Note this function

is only relevant to File and Source Disassembly windows

CONFIG menu
Load Load a new configuration file
Save Save the current configuration to the specified file

CPU menu
Save Regs Save the current state of the registers
Reset Regs Reload the previously saved register state
Reset Reset the target processor

STEP menu
Trace Mode: traps and break instructions are stepped over

STEPOVER menu
Stepover mode: subroutine call instructions are stepped over

11–14 The Debugger DBUGPSX

SDevTC Development Environment

SDevTC Development Environment

Chapter 12:
The Debug Stub Functions

12–2 The Debug Stub Functions

SDevTC Development Environment

The Debug Stub Functions 12–3

SDevTC Development Environment

Overview

If the debugger stub on the target machine has been initialized (by setting the dip switches on the PSX
appropriately, see the PSX target box documentation) then debugger stub services are available from
assembly language using the BREAK opcodes. These services include fileserver functions which allow the
PSX to access files on the PC hard disk as well as some specific debugger functions. These fileserver
functions are also accessible as ‘C’ callable functions and the pollhost function as a ‘C’ macro, provided by
the default library LIBSN.LIB . The facilities provided are discussed in two sections:

• Assembly language facilities
• The ‘C’ library functions

Note:Note:Note:Note: The Pollhost function should be included in user source code for proper operation of the debugger. It
is responsible for transferring data to the PC debugger so should be put in the main loop or the vertical
blank interrupt of the program to be debugged. This call takes time to transfer the data however if updates
are turned off (see Chapter 11) or the debugger is exited, then the call will return immediately.

Assembly Language Facilities

To call a particular function, load any parameters into the specified registers then issue the BREAK
command followed by the appropriate code.

Table 12-1: Function Codes

Code Function Meaning and Arguments

0x0000 Used by debugger as breakpoint for step/trace etc. but can also
be used to halt user code for examination by debugger.

0x0101 PCinit() Initializes PC remote filing system
Passed: nothing
Returns: v0 = error code (0 if successful)

0x0102 PCcreate() Creates a file on the PC
Passed: a1 = pointer to ascii file name (zero terminated)

a2 = file attributes
Return: v0 = PC error code (0 if successful)

v1 = file handle
0x0103 PCopen() Opens a file on the PC

Passed: a1 = pointer to ascii file name (zero terminated)
a2 = file open mode (0 is read/write, see PC DOS info)

Return: v0 = PC error code (0 if successful)
v1 = file handle

0x0104 PCclose() Closes a file on the PC
Passed: a1 = file handle
Return: v0 = error code (0 if successful)

0x0105 PCread() Reads a file on the PC
Passed: a1 = file handle

a2 = count of number of bytes to read
a3 = pointer to buffer

Return: v0 = error code (0 if successful)
v1 = amount of data actually read

12–4 The Debug Stub Functions

SDevTC Development Environment

Code Function Meaning and Arguments (Cont.)

0x0106 PCwrite() Writes a file on the PC
Passed: a1 = file handle

a2 = count of number of bytes to write
a3 = pointer to buffer

Return: v0 = error code (0 if successful)
v1 = amount of data actually written

0x0107 PCseek() Seeks (moves file pointer) position in a PC file
Passed: a1 = file handle

a2 = seek offset
a3 = file seek mode

(0 = relative to start of file)
(1 = relative to current file pointer)
(2 = relative to end of file)

0x0400 Pollhost PC. (To service PC data request etc)
Preserves all registers
This function polls the host PC and allows it access to the PSX
memory, necessary, for example, during real time debugging (see

the first page of this chapter)
0x0401 Cold Start debugger stub. Does not return any values
0x0402 Warm Start debugger stub. Does not return any values
0x0403 Enables/Disables interrupts while in downloader

Default at cold-start is interrupts-disabled while debugger stub is
running
Passed: a0 = value to be ANDed with status reg on entry to debugger

a1 = value to be ORed with status reg on entry to debugger
Default values at debugger startup are 0xFFFFFFFC and 0: i.e.,
interrupts off during debugger functions

0x0404 Enables/Disables CPU cache
Passed: a0=0 to disable

a0=1 to enable cache
0x0405 Unhooks debugger from interrupt vectors

This will restore the interrupt vector at 0x00000080 to its previous state
(as it was before the debugger stub was installed)

0x0406 Flags which interrupts are to be handled by debugger
Passed: a0 = bit mask (1 bit per interrupt source)
Each bit masks an interrupt source (as per each possible value of
CAUSE register)
Bit No. Corresponding interrupt source
00 Interrupt
01 Not on PSX (TLB modified exception on R3000)
02 Not on PSX (TLB load exception)
03 Not on PSX (TLB store)
04 Address Error (load or instr fetch)
05 Address Error (Store)
06 Bus Error (instr fetch)
07 Bus Error (Data load or store)
08 Syscall
09 Break
10 Reserved Instruction
11 Copro Unusable
12 Arithmetic Overflow
Bit=1: Interrupt to be trapped by debugger
Bit=0: Interrupt to be passed to old handler (for example OS)
Default value for this flag word at debugger stub cold start is bit 0 not
set (0), bits 1 to 12 set (1)

The Debug Stub Functions 12–5

SDevTC Development Environment

The ‘C’ Library Functions

The following are provided by LIBSN.LIB and declared in LIBSN.H. The majority are fileserver functions but
there is also one macro to provided feedback for the debugger:

Pollhost
PCinit
PCopen
PClseek
PCread
PCwrite
PCclose

12–6 The Debug Stub Functions

SDevTC Development Environment

The Pollhost Macro

Description

Causes the target box to poll the host PC allowing the debugger access to the PSX memory while it is
running code, that is, not single stepping.

Syntax

pollhost is defined as follows:

define pollhost () asm (“break 1024”) /* Ox0400 */

so its syntax is obvious:

pollhost ()

Remarks

A macro is used so the call is inline preserving the variable scope.

This function should be included in user source code for proper operation of the debugger. It is responsible
for transferring data to the PC debugger therefore it should be put in the main loop of the program to be
debugged or in a vertical blank interrupt. This call will obviously take time to transfer the data however if you
turn updates off (see Chapter 11) or exit the debugger then the call will return immediately.

The Debug Stub Functions 12–7

SDevTC Development Environment

The PCinit Function

Description

This function reinitializes the PC filing system, closes open files etc..

Prototype

int PCinit (void);

passed: void

return: error code (0 if no error)

12–8 The Debug Stub Functions

SDevTC Development Environment

The PCopen Function

Description

This function opens a file on the PC host.

Prototype

int PCopen (char *name, int flags, int perms);

passed: PC file pathname
open mode (0 = read access, 1 = write access, 2 = read/write access)
permission flags (this is included only for UNIX compatibility and should be set to 0)

return: file-handle or -1 if error

The Debug Stub Functions 12–9

SDevTC Development Environment

The PClseek Function

Description

This function seeks the file pointer to the specified position in the file.

Prototype

int PClseek (int fd, int offset, int mode);

passed: file-handle
seek offset
seek mode

(mode 0 = rel to start, mode 1 = rel to current fp, mode 2 = rel to end)

return: absolute value of new file pointer position

Remarks

To find the length of a file which is to be read into memory perform:

len = PClseek (fd, 0, 2);

This will set len to the length of the file and can then be passed to PCread ().

12–10 The Debug Stub Functions

SDevTC Development Environment

The PCread Function

Description

This function reads a specified number of bytes from a file on the PC.

Prototype

int PCread (int fd, char *buff, int len);

passed: file-handle
buffer address
count

return: count of number of bytes actually read

Remarks

Unlike the assembler function this provides for a full 32-bit count

PCread should not be passed extreme values of count, as could be done on a UNIX system, as this will
cause the full amount specified to be transferred, not just to the end of the file. To find the length of a file
which is to be read into memory perform:

len = PClseek (fd, 0, 2);

This will set len to the length of the file and can then be passed to PCread ()

The Debug Stub Functions 12–11

SDevTC Development Environment

The PCwrite Function

Description

This function writes the specified number of bytes to a file on the PC

Prototype

int PCwrite (int fd, char *buff, int len);

passed: file-handle
buffer address
count

return: count of number of bytes actually written

Remarks

Unlike assembler function this provides for full 32-bit count

12–12 The Debug Stub Functions

SDevTC Development Environment

The PCclose Function

Description

This function closes an open file on PC

Prototype

int PCclose (int fd);

passed: file-handle

return: negative if error

SDevTC Development Environment

Chapter 13:
The PSYLINK Linker

13–2 The PSYLINK Linker

SDevTC Development Environment

The PSYLINK Linker 13–3

SDevTC Development Environment

Overview

The SDevTC Linker, PSYLINK, is a fully-featured linker which works with all processor types and is
compatible with other popular cross-compilers, such as Sierra and Aztec C. It facilitates the splitting of
complex programs into separate, manageable subprograms, which can be recombined by PSYLINK into a
final, single application.

This chapter discusses the linker, together with the Librarian utility, under the following headings:

• Command line syntax
• Linker command files
• XDEF, XREF and PUBLIC
• GLOBAL

The Linker-associated Assembler directives are repeated here for ease of reference.

Command Line Syntax

Description

The PSYLINK link process is controlled by a series of parameters on the command line and by the contents
of a Linker command file. The syntax for the command line is as follows:

Syntax

PSYLINK [switches] sourcefiles,outputfile,symbolfile,mapfile,libraries

If an argument is omitted the separating comma must still appear, unless it is the last argument specified
on the line.

Linker Switches

Switches are preceded by a forward slash and separated by commas. The following switches are available:

Table 13-1: PSYLINK Switches

Switch Description

/a Sets C variable alignment to 2 bytes
/b Specifies that the linker should run in ‘big’ mode. This allows the linker to link

larger programs but with a link-time penalty
/c Tells the linker to link case sensitive; if it is omitted, all names are converted to

upper case
/d Debug Mode, performs link only
/e symb=value Assigns value to symbol
/i Invokes a window containing Link details
/l path Specifies path to search for library files
/m Outputs all external symbols to the map file
/n maximum Sets the maximum number of object files or library modules that can be linked

from 1 to 32768; default is 256; higher values require larger amounts of memory
/o address Sets an address for an ORG statement
/o ?address Requests target to assign memory for ORG

13–4 The PSYLINK Linker

SDevTC Development Environment

/p Outputs padded pure binary object code; ORGed sections of code are
separated with random data

/ps Outputs ASCII representation of binary file in Motorola s-record format
/r format Creates machine specific relocatable output
/s All sections must be in defined groups
/u number Specifies the unit number in a multi-processor target

/x address Sets address for the program to commence execution
/z Clears all requested BSS memory sections

Arguments

Sourcefile(s) A list of code source files, output by the ASMPSX assembler. File names are
separated by spaces or plus (+) signs; if the file starts with an @ sign, it signifies
the name of a Linker command file (see next page for a description of the format).

Outputfile The destination file for the output object code, if omitted, no object code is
produced. If the output file name is in the format Tn:, the object code is directly
sent to the target machine, n specifies the SCSI device number.

Symbolfile The destination file for the symbol table information for use by the Debugger.

Mapfile The destination file for map information.

Libraryfiles Library files available (see Chapter 14).

Linker Command Files

Command files contain instructions for the Linker about source files and how to organize them. The Linker
command file syntax is much like the Assembler syntax, with the following commands available:

Commands

INCLUDE filename Specify name of object file to be read

INCLIB filename Specify library file to use

ORG address Specify ORG address for output

WORKSPACE address Specify new target workspace address

name EQU value Equate name to value

REGS pc=address Set initial PC value

name GROUP attributes Declare group

name SECTION attributes Declare section with attributes

SECTION name[,group] Declare section, and optionally specify its group

name ALIAS oldname Specify an ALIAS for a symbol name

UNIT unitnum Specify destination unit number

Group Attributes

BSS Group is uninitialized data

ORG (address) Specify group’s org address

OBJ (address) Specify group’s obj address

The PSYLINK Linker 13–5

SDevTC Development Environment

OBJ () Group’s obj address follows on from previous group

OVER (group) Overlay specified group

FILE (“filename”) Write group’s contents to specified file

SIZE (maxsize) Specify maximum allowable size

Remarks

Sections within a group are in the order that section definitions are encountered in the command file or
object/library files.

Any sections that are not placed in a specified group will be grouped together at the beginning of the
output.

Groups are output in the order in which they are declared in the Linker command file or the order in which
they are encountered in the object and library files.

Sections which are declared with attributes, that is, not in a group, in either the object or library files, may
be put into a specified group by the appropriate declaration in the Linker command file.

Example
include “inp.obj”
include “sort.obj “
include “out.obj”

org 1024
regs pc=progstart

comdata group
code group
bssdata group bss

section datal,comdata
section data2,comdata

section codel,code
section code2,code

section tables,bssdata
section buffers,bssdata

13–6 The PSYLINK Linker

SDevTC Development Environment

XDEF, XREF and PUBLIC Directives

Description

If several subprograms are being linked; to refer to symbols in a subprogram which are defined in another
subprogram, use XDEF, XREF and PUBLIC.

Syntax

XDEF symbol[,symbol]
XREF symbol[,symbol]
PUBLIC on
PUBLIC off

Remarks

In the subprogram where symbols are initially defined, the XDEF directive is used to declare them as
externals.

In the subprogram which refers to the symbols, the XREF directive is used to indicate that the symbols are
in a another subprogram.

The Assembler does not completely evaluate an expression containing an XREFed symbol however
resolution will be effected by the linker.

Specifying a size of w on the XREF directive indicates that the symbol can be accessed using absolute
word addressing.

The PUBLIC directive allows the programmer to declare a number of symbols as externals. With a
parameter of on it tells the Assembler that all further symbols should be automatically XDEFed until a
PUBLIC off is encountered.

Examples

Subprogram A contains the following declarations:

xdef Scores,Scorers
xref.w PointsTable
...

The corresponding declarations in subprogram B are:

xdef PointsTable
xref Scores,Scorers
...

———
public on

Origin = MainChar
Force dh speed*origin
Rebound dh 45*angle

public off

See also:The XDEF, XREF and PUBLIC Directives on page 10-10

The PSYLINK Linker 13–7

SDevTC Development Environment

GLOBAL

Description

The GLOBAL directive allows a symbol to be defined which will be treated as either an XDEF or an XREF. If
a symbol is defined as GLOBAL and is later defined as a label, it will be treated as an XDEF. If the symbol is
never defined, it will be treated as an XREF.

Syntax

GLOBAL symbol[,symbol]

Remarks

This is useful in header files because it allows all separately assembled modules to share one header file,
defining all global symbols. Any of these symbols later defined in a module will be XDEFed, the others will
be treated as XREFs.

See also: XREF, XDEF and PUBLIC

13–8 The PSYLINK Linker

SDevTC Development Environment

SDevTC Development Environment

Chapter 14:
The Librarian

14–2 The Librarian

SDevTC Development Environment

The Librarian 14–3

SDevTC Development Environment

Overview

If the Linker cannot find a symbol in the files produced by the Assembler, it can be instructed, by a Linker
command line option to search one or more object module Library files.

This chapter discusses Library usage and the PSYLIB library maintenance program in the following
sections:

• PSYLIB Command Line Syntax
• Using the Library Feature

PSYLIB Command Line Syntax

Description

The Library program, PSYLIB.EXE , adds to, deletes from, lists and updates libraries of object modules.

Syntax

PSYLIB /switches library module...module
where switches are preceded by a forward slash (/), and separated by commas.

Switches

/a Add the specified modules to the library

/d Delete the specified module from the library

/l List the modules contained in the library

/u Update the specified modules in the library

/x Extract the specified modules from the library

Arguments

Library The name of the file to contain the object module library

Module list The object modules involved in the library maintenance

See also: PSYLINK

14–4 The Librarian

SDevTC Development Environment

Using the Library Feature

To incorporate a Library at link time, specify a library file on the Linker command line (see Chapter 13).

If the Linker locates the required external symbol in a nominated library file, the module is extracted and
linked with the object code output by the Assembler.

When using a C compiler, the -c option (Note lowercase c) on the CCPSX command line will force the
compiler to output only .OBJ files, these can then be added to a library.

SDevTC Development Environment

Chapter 15:
The PSYMAKE Utility

15–2 The PSYMAKE Utility

SDevTC Development Environment

The PSYMAKE Utility 15–3

SDevTC Development Environment

Overview

PSYMAKE is a make utility for MS-DOS which automates the building and rebuilding of computer
programs. It is general purpose and not limited to use with the SDevTC system. The utility is discussed
under the following headings:

• PSYMAKE Command Line Syntax
• Format of the Makefile

PSYMAKE Command Line Syntax

Description

PSYMAKE rebuilds only those components of a system that need rebuilding. Whether a program needs
rebuilding is determined by the file date stamps of the target file and the source files that it depends on.
Generally, if any of the source files are newer than the target file the target file will be rebuilt.

Syntax

PSYMAKE [options] [target]

Remarks

Valid options are:

/b Build all, ignoring dates

/d name=string Define name as string

/f filename Specify the MAKE file

/i Always ignore error status

/q Quiet mode: do not print commands before executing them

/x Do not execute commands, just print them

If no /f option is specified, the default makefile is MAKEFILE.MAK. If no extension is specified on the
makefile name, .MAK will be assumed.

If no target is specified the first target defined in the makefile will be built.

Format of the Makefile

The Makefile consists of a series of commands, governed by explicit rules known as dependencies, and
implicit rules. When a target file needs to be built, PSYMAKE will first search for a dependency rule for that
specific file. If none can be found, PSYMAKE will use an implicit rule to build the target file.

Dependencies

A dependency is constructed as follows:

targetfile: [sourcefiles]
[command
...
command]

The first line instructs PSYMAKE that the file “targetfile” depends on the files listed as “sourcefiles”.

15–4 The PSYMAKE Utility

SDevTC Development Environment

If any of the source files are dated later than the target file, or the target file does not exist, PSYMAKE will
issue the commands that follow in order to rebuild the target file.

If no source files are specified, the target file will always be rebuilt.

If any of the source files do not exist, PSYMAKE will attempt to build them first, before issuing the
commands to build the current target file. If PSYMAKE cannot find any rules defining how to build a
required file, it will stop and report an error.

The target file name must start in the left hand column. The commands to be executed in order to build the
target must all be preceded by white space (either space or tab characters). The list of commands ends at
the next line encountered with a character in the leftmost column.

Examples
main.cpe: main.s inc1.h inc2.h

ASMPSX main,main

This tells PSYMAKE that main.cpe depends on the files main.s , inc1.h and inc2.h . If any of these files
are dated later than main.cpe , or main.cpe does not exist, the command “ASMPSX main,main” will be
executed in order to create or update main.cpe .

main.cpe: main.s inc1.h inc2.h
ASMPSX /l main,main,main
psylink main,main

Here, two commands are required in order to rebuild main.cpe.

Implicit Rules

If no commands are specified, PSYMAKE will search for an implicit rule to determine how to build the target
file. An implicit rule is a general rule stating how to derive files of one type from another type, for instance,
how to convert .ASM files into .EXE files.

Implicit rules take the form:

.<source extension>.<target extension>:
command
[...
command]

Each <extension> is a 1, 2 or 3 character sequence specifying the DOS file extension for a particular class
of files.

At least one command must be specified.

Example
.s.bin:

asmpsx /p $*,$*

This states that to create a file of type .bin from a file of type .s, the ASMPSX command should be
executed. (See below for an explanation of the $* substitutions.)

Executing Commands

Once the commands to execute have been determined, PSYMAKE will search for and invoke the
command. The search order is current directory then directories in the path.

If the command cannot be found as an A.EXE or A.COM file or the command is A.BAT file, PSYMAKE
will invoke COMMAND.COM to execute the command/batch file. This enables commands like CD and DEL to
be used.

The PSYMAKE Utility 15–5

SDevTC Development Environment

Command Prefixes

The commands in a dependency or implicit rule command list may optionally be prefixed with the following
qualifiers:

@ Suppress printing of command before execution

-level Abort if exit status exceeds specified level

- (Without number) ignore exit status (never abort)

Normally, unless /q is specified on the command line, PSYMAKE will print a command before executing it.
If the command is prefixed by @, it will not be printed.

If a command is prefixed with a hyphen followed by a number, PSYMAKE will abort if the command returns
an error code greater than the specified number.

If a command is prefixed with a hyphen without a number, PSYMAKE will not abort if the command returns
an error code.

If neither a hyphen or a hyphen and number is specified and /i is not specified on the command line,
PSYMAKE will abort if the command returns an error code other than 0.

Macros

A macro is a symbolic name which is equated to a piece of text. A reference to that name can then be
made and will be expanded to the assigned text. Macros take the form:

name = text

The text of the macro starts at the first non-blank character after the equals sign (=) and ends at the end of
the line. Note that:

• Case is significant in macro names
• Macro names may be redefined at any point
• If a macro definition refers to another macro, expansion takes place at time of usage
• A macro used in a rule is expanded immediately
• To invoke a macro its name must be enclosed within $ (and). For example $ (flags) for the variable flags

Example
FLAGS = /p /s
...
.s.bin:

ASMPSX $ (FLAGS) $*,$*

The $ (FLAGS) in the ASMPSX command will be replaced with /p /s .

Predefined Macros

The following predefined macros all begin with a dollar sign and are intended to aid file usage:

$d Defined test macro, e.g.:
!if $d (MODEL)
if MODEL is defined

$* Base file name with path, e.g.:
C:\PSYQ\TEST

$<< Full file name with path, e.g.:
C:\PSYQ\TEST.S

15–6 The PSYMAKE Utility

SDevTC Development Environment

$: Path only, e.g.:
C:\PSYQ

$. Full file name, no path, e.g.:
TEST.S

$& Base file name, no path, e.g.:
TEST

The filename predefined macros can only be used in command lists of dependency and implicit rules.

Directives

The following directives are available:

!if expression

!elseif expression

!else

!endif

These directives allow conditional processing of the text between the if, elseif, else and the closing endif.
Any non-zero expression is True, zero is False.

!error message Print the message and stop.

!undef macroname Undefines a macro name.

Expressions

Expressions are evaluated to 32 bits, and consist of the following components:

Decimal Constants e.g. 1 10 1234

Hexadecimal e.g. $FF00 $123abc

Monadics - ~ !

Dyadics + - * / % > < &
| ^ && ||
> < >= <= == (or =)
!= (or <>)

The operators have the same meaning as they do in the C language, except for = and <>, which have been
added for convenience.

Value Assignment

Macro names can be assigned a calculated value; for instance:

NUMFILES == $ (NUMFILES)+1

(Note that there are two equals signs in the value assignment)

This evaluates the right hand side, converts it to a decimal ascii string and assigns the result to the name
on the left.

In the above example, if NUMFILES was currently “42”, it will now be “43”.

Note that:

$ (NUMFILES)+1

would have resulted in NUMFILES becoming “42+1”.

Undefined macro names convert to ‘0’ in expressions and null string elsewhere.

The PSYMAKE Utility 15–7

SDevTC Development Environment

Comments

Comments are introduced by a hash mark (#):

main.exe: main.asm # main.exe only depends
on main.asm

whole line comment

Line Continuation

A command too long to fit on one line may be continued on the next by making ‘\ ’ the last character on
the line, with no following spaces or tabs:

main.exe: main.asm i1.h i2.h \
i3.h i4.h

15–8 The PSYMAKE Utility

SDevTC Development Environment

SDevTC Development Environment

Chapter 16:
SDevTC Debugger for Windows 95

16–2 SDevTC Debugger for Windows 95

SDevTC Development Environment

SDevTC Debugger for Windows 95 16–3

SDevTC Development Environment

Overview

The SDevTC Debugger for Windows 95 takes advantage of the new range of 32-bit operating systems
available for PCs; providing full source level as well as traditional symbolic debugging and supporting and
enhancing all the power of the DOS-based version plus the advantages of a multi-tasking GUI environment.

It helps you to detect, diagnose and correct errors in your programs via the step and trace facilities, with
which you can examine local and global variables, registers and memory.

Breakpoints can be set wherever you need them at C and Assembler level. If required, these breaks can be
made conditional on an expression. Additionally, selected breakpoints can be disabled for particular runs.

The Debugger employs drop-down menus, tool buttons, keyboard shortcuts and pop-up menus to help
you debug quickly and intuitively.

Projects

The Debugger uses Projects to group together details of Files, Targets, Units, Views and other settings and
preferences. All this information is saved and made available for your next debugging session.

Views

The Debugger offers the functionality of splitting the screen into a number of Panes, each displaying
discrete or linked information. This information is available within a View, or document window (MDI Child).
Each View can be split horizontally or vertically into the number of Panes you require and each Pane can be
set to show a specific type of information.

You can have as many combinations of either tiled Panes or overlapping Views as you choose.

Your choice of Views depends on the level at which you are debugging. For example, it is appropriate to
use a Register Pane for assembler debugging and a Local Pane when debugging in C.

Individual Views can be saved on disk for subsequent use in other Projects. However, when you close the
Debugger and then re-start a session, your previous screen set-up will initially be displayed automatically.

Color Schemes

To aid identification, a separateseparateseparateseparate color scheme can be allocated to the Views used by each Unit that you
reference. Alternatively, the same color can be allocated to all all all all Views.

Files

The Symbol Files you require are located and loaded by the Debugger and the relevant CPE and Binary
Files are downloaded to the Target. Where a multi-unit system is in use you must also specify the Unit
where Symbol and Binary Files are to be loaded.

16–4 SDevTC Debugger for Windows 95

SDevTC Development Environment

Dynamic Update

Changes in memory are highlighted on each display update, showing which areas of memory are being
altered as the Target is being run and you are stepping and tracing your code.

Chapter Contents

The following topics are discussed in this chapter:

• On-line Help
• Installing the Debugger
• Launching the Debugger
• The SDevTC File Server
• Connecting the Target and Unit
• SdevTC Project Management
• SDevTC Debugger Productivity Features
• SdevTC Views
• Working with Panes
• Debugging Your Program
• Closing the Debugger

SDevTC Debugger for Windows 95 16–5

SDevTC Development Environment

On-line Help Available For The Debugger

Help text describing the features covered in this chapter can also be accessed on-line via the Help menu
on the main menu.

Selecting these options will result in the following:

• ContentsContentsContentsContents will display the Contents page of the help system in the left-hand side of the screen. Clicking
any of the underlined topics will provide further information about the relevant subject.

• Pane TypesPane TypesPane TypesPane Types and the required PanePanePanePane will directly access relevant text for the chosen pane.

• InstallationInstallationInstallationInstallation will display installation procedures.

• AboutAboutAboutAbout will provide the version number.

Within the on-line help system, clicking text with a dotteddotteddotteddotted underline will display a pop-up description while
double-clicking text with a solidsolidsolidsolid underline will display another (linked) help page.

The buttons at the top of the help text window can be used to facilitate the following:

• Search and/or Find to locate a particular word or topic.

• Back to re-display the previous page.

• << and >> to display the previous and next page in the browse sequence, as outlined in the Table Of
Contents. (See below).

• Glossary to display an alphabetic listing of terms found in the help system. Click on any topic to obtain
a pop-up definition.

As well as accessing information via the Contents page, on-line help can also be located via the Table Of
Contents in the right-hand area of the screen. This represents the subject areas of the help system as book
icons. Double-click any icon to display titles of the individual pages which compose each ‘book’. Double-
click any of these pages and the text will be displayed in the left-hand side of the screen.

Installing The Debugger

A Set-up program is used to install the Debugger. This is distributed via either of the following methods:

• Full Release Files
• Maintenance Patch Files

Both methods are described in more detail below the Directory Structure.

Directory Structure

All the Files relating to the Windows software live in one directory tree. This tree can reside anywhere but it
is probably easier to locate it on the root of a local drive.

The default directory name is:

C:\PsyQ_Win\

It is recommended that you follow this convention.

Set-up also installs several Files in the Windows System directory and adds two keys to the Registry.These
keys are:

• [HKEY_LOCAL_MACHINE\SOFTWARE\SN Systems] (hardware settings)
• [HKEY_CURRENT_USER\Software\SN Systems] (configuration information)

16–6 SDevTC Debugger for Windows 95

SDevTC Development Environment

Set-up also registers the File types .psy.psy.psy.psy (SDevTC Project), .pqp.pqp.pqp.pqp (SDevTC patch) and .cpe,.cpe,.cpe,.cpe, and adds some
programs to the Start menu.

IMPORTANT:IMPORTANT:IMPORTANT:IMPORTANT: Do not install the program on a server and execute it across a network. For un-installation
advice, please contact SN Systems.

Obtaining Releases and Patches

Releases and patches are available directly from SN Systems’ BBS and ftp sites. In order to access these
sites you will need an account with the necessary permissions.

To apply for an account, telephone SN Systems or contact them via Support@snsys.com. Patches and
releases can also be obtained via email in MIME, provided that you are a member of the Windows-Users
mailing list. (See below).

Note:Note:Note:Note: Members of the Windows-Users mailing list will be notified of releases and patches as they become
available.

Determining the Latest Releases and Patches

This is achieved via any of the following methods:

• Contact John@snsys.com.
• Look in one of the File sites for the latest Files and information.
• Send mail to the auto-responder maildrop - Versions@snsys.com.

Mailing Lists

SN Systems maintains the following mailing lists:

• Announce@snsys.com - For all announcements regarding SDevTC
• Windows-Users@snsys.com - For up-to-date information
• Windows-Discuss@snsys.com - For all Debugger users (discussion)

The first two are read-only and provide details about revisions and other information. The third is an open
read/write list which hosts any Debugger related discussions, problems, suggestions or comments.

For more information on these lists, send a HELP message to Norman@snsys.com (the Robot List
Manager) or John@snsys.com.

Addresses for SN Systems’ ftp, web and BBS sites

• ftp://ftp.snsys.com
• http://www.snsys.com
• BBS - +44 (0)117 9299 796 and +44 (0)117 9299 798

Beta Test Scheme

SN Systems maintains a separate scheme for beta testing new versions of the Debugger. The benefits of
this are as follows:

• You will receive new versions of the Debugger before any other user.
• You will have a prioritized chance to supply feedback to the Debugger’s authors.

If you are a member of this scheme, you don’t need to install release versions of the Debugger.

For more information, contact John@snsys.com.

SDevTC Debugger for Windows 95 16–7

SDevTC Development Environment

Installing a Full Release

A Full Release File contains an archive of several Files and a Set-up program that can be used to install the
Debugger automatically.

To install the release:

1. Obtain the latest full release from SN Systems.
2. Read Readme.txtReadme.txtReadme.txtReadme.txt which contains last-minute installation instructions.
3. If the release is on a floppy, launch Setup.exeSetup.exeSetup.exeSetup.exe straight-away. If however, the release is in a zip File, you

must unzip the File into a temporary directory and then launch Setup from that temporary directory.
4. If this is the first full installation of the Debugger, confirm the displayed license conditions.
5. Specify or confirm the directory in which you wish to install the Debugger.
6. The Files will be installed and the Registry will be updated.
7. Depending on the type of installation, specify the settings for the DEX Board or SCSI Card. (See

Configuring Your Dex Board/SCSI CardConfiguring Your Dex Board/SCSI CardConfiguring Your Dex Board/SCSI CardConfiguring Your Dex Board/SCSI Card below).

Once the dialog has been completed the installation is complete.

Note: Note: Note: Note: This method can be used for the first installation of the Debugger and also for subsequent upgrades
if you do not wish to use Maintenance Patches. See Upgrading Your SystemUpgrading Your SystemUpgrading Your SystemUpgrading Your System below.

Upgrading Your System

From time to time, SN Systems will provide updates to the Debugger that introduce bug fixes and new
features. For your convenience, updates are supplied as full installations andandandand as maintenance patches.

A Maintenance Patch contains only the difference between Files so it is much smaller. This makes it quicker
to download and apply. However, patches can only be applied over certain previous versions.

To apply a Maintenance Patch:

1. Determine your current release by reading the AboutAboutAboutAbout box for the Debugger.
2. Obtain the Maintenance Patch from SN Systems. Instructions will be provided so you can determine

which patch must be applied.
3. Apply the patch by using the PQSetup program. This is available on the Start menu or by double-

clicking a patch file (.pqp). Follow the on-line instructions.

Configuring Your Dex Boards

If you are installing a Full Release for the PlayStation (DEX only), you must specify the settings for these DEX
Boards.

Enter appropriate values to the dialog box displayed during the Set-up program.

Figure 16-1: DEX Board Settings Dialog Box

16–8 SDevTC Debugger for Windows 95

SDevTC Development Environment

1. Enter a 3 or 4-digit hexadecimal number to the Port Address and Parallel boxes and specify an IRQ
value by clicking on the down arrow and selecting as appropriate.

2. Click .

The installation is now complete.

IMPORTANT: Port Address and IRQ values must be correct for the Debugger to work. If they are
incorrect or another device is configured to use similar settings, the programs will not work.

Note: The Parallel setting should be set to the I/O address of the port to which your dongle is connected.
Most PCs use 378 for 1pt1. If your dongle is on a different parallel port or your PC uses a non-standard
port address, change this value. See FAQ.DOC for more information.

Configuring Your SCSI Card

If you are installing a Full Release for a SCSI Target, you must specify the settings for the SCSI Card.

Enter appropriate values to the dialog box displayed during the Set-up program.

Figure 16-2: SCSI Card Settings Dialog Box

1. Specify a Port Address and IRQ value by clicking on the down arrows and selecting as appropriate.

2. Click .

The installation is now complete.

IMPORTANT: Port Address and IRQ values must be correct for the Debugger to work. If they are
incorrect or another device is configured to use similar settings, the programs will not work.

Note: The IRQ value can be set to 0 to run without interrupts. However, this is only recommended for
troubleshooting since running without interrupts will seriously impair the performance of the system.

Testing the Installation

Once the Debugger has been installed, you should now run PsyServe.exe in order to test that the
configuration is working correctly.

A message similar to the following should be displayed:

Psy-Q File and Message Server, Copyright 1995, SN Systems Ltd,
Version: 1.00 (December 1995)

Target: Sony PlayStation Plug-In
Resources: Port=0x390, Interrupt=12

Loading SCSI Drivers...
Connected to SONY_PSX5.15
Ready to Serve

SDevTC Debugger for Windows 95 16–9

SDevTC Development Environment

If no message appears at all, your Port and IRQ settings may be incorrect or there may be a resource
conflict with some other device.

However, you can change the Port/IRQ settings by re-running the Set-up program as follows:

1. Click on the Open File dialog box.

2. Select the appropriate Card from the Cards menu.

You will then be presented with the same dialog box as was displayed during installation.

See FAQ.DOC if you continue to have problems.

Documentation

If you experience problems during installation, the following documents provide useful information:

• README.DOC details how to obtain and apply maintenance releases

• FAQ.DOC contains Frequently Asked Questions and should be consulted if you experience any
problems

• BUG.TXT describes how to report bugs

• TODO.TXT lists known bugs, problems and features that are not yet incorporated into the Debugger

Launching The Debugger

There are several ways of launching the SDevTC Debugger under Windows 95.

A simple way is as follows:

1. Select the Start menu from Windows 95.

2. Choose the Programs option from the list displayed.

3. Select the Psy-Q folder from the list of programs.

4. Select Psy-Q Debugger from the folder.

You can also launch the Debugger from the desktop or folders or through Explorer in Windows 95.

With the drag and drop facility you can drop an SDevTC Debugger Project File (extension .PSY) onto the
icon of the Debugger and the selected Project is launched.

Alternatively, as file type .PSY has been registered with the Windows 95 shell, you can right-click on a
Project File, select Debug from the menu and the Debugger will be launched with the selected Project.

Note: While the Debugger is still running, you can open a new Project by following the procedure
described in the previous paragraph.

When you launch the Debugger it scans for recognized Units. If none are found, a dialog box prompts you
to either Repoll or Quit . If the latest downloader has not been installed, you are prompted to download
this. The SDevTC File server is automatically launched with the Debugger.

See Also: Launching the File Server without the Debugger

16–10 SDevTC Debugger for Windows 95

SDevTC Development Environment

The SDevTC File Server

The primary function of the SDevTC File Server is to provide the PC Open and PC Read functions for your
program.

It is always launched when the Debugger is launched and must always be running in the background while
the Debugger is being used, both file serving and collecting messages.

When the File Server is running, the icon and name of the application appear on the Task bar of Windows
95.

You can view the messages appended into the message window of the File Server during debugging by
clicking on this icon.

Figure 16-3: File Server Message Window

If you wish the message window to be permanently displayed on top of other windows, select Always on
Top from the View menu.

When the Debugger or File server experiences a communication error, a dialog box will display a relevant
error code and a Retry and Cancel button.

Figure 16-4: Communication Error Dialog Box

Press Retry and the attempted connection will be repeated. Press Cancel and the system will try to carry
on and will attempt to recover from the error.

Note: If the Debugger comes up with this message, the File Server can still be used to reset the Target.

SDevTC Debugger for Windows 95 16–11

SDevTC Development Environment

File Server Menu Commands

In addition, seven menu commands can be used with the File server:

• Run Project loads all Files (except Symbol Files) that are set to ‘download on project startup’ and runs
the Project without loading the Debugger.

• Download CPE downloads the cpe file to the Target.
• Run CPE runs the Target after the cpe file has been downloaded.
• Ping determines the current status of the Target.
• Halt provides the option to stop the Target if it is running.
• Clear Window removes any File Server messages.
• Reset Target

Note: Resetting the Target while the Debugger is running may cause unpredictable results.

Note: The Reset option is also available from the System menu of the File server.

IMPORTANT: The SDevTC File Server must always be running when the Debugger is running. You will not
be permitted to stop the server until you close the Debugger. However, the File Server can be run without
the Debugger.

Launching the File Server without the Debugger

If you wish to launch the File Server independently of the Debugger, for example, to run your Project
without loading the Debugger:

1. Select the Start menu of Windows 95.
2. Choose the Programs option from the list displayed.
3. Select the Psy-Q folder from the list of programs.
4. Choose the Psy-Q File Server option from the folder.

Note: When you launch the File server the Target is automatically reset, whether the Debugger is running
or not.

See Also: Launching the Debugger

Connecting The Target and Unit

The SDevTC Debugger automatically checks your system when you launch it, identifies any Targets that
are connected and, according to whether you are running a single or multi-unit system, automatically
connects to the relevant unit(s).

The Unit toolbar appears at the bottom of the Debugger window directly above the Status line. The first
icon in the toolbar has a pictogram of the Target known as the Unit button.

Figure 16-5: Unit Button

There will be a Unit toolbar and unique button for each unit identified. Click on the button to display the unit
menu. This menu allows you to download and load (as relevant) foreign CPE and Symbol Files and non-
foreign CPE and Binary Files. The menu also allows you to see and edit breakpoints.

The menu options are:

• Download CPE
• Download Binary
• Load Symbols
• Breakpoints

16–12 SDevTC Debugger for Windows 95

SDevTC Development Environment

Each toolbar contains a set of debugging icons which represent:

• Starting programs
• Stopping a program running
• Stepping into a subroutine
• Stepping over a subroutine

Note: These actions operate only with respect to the relevant unit. Therefore, when a multi-unit system is
in use, they will not necessarily operate with respect to the Active View.

Note: The SDevTC File server is automatically launched when the SDevTC Debugger is started. The Server
window displays any output from the Target while it is running.

SDevTC Project Management

An SDevTC Project is a combination of the elements and settings associated with a specific development
project. It consists of any or all of the following:

• Units to be debugged
• Screen layout
• CPE Files
• Symbol Files
• Binary Files
• Breakpoints
• Other settings and preferences.

This set of information is used by the Debugger to track the debugging process. When you save a Project
this includes all the Views, color schemes and breakpoints already specified for it. These settings are
reinstated when the Project is next opened.

Setting up and Managing Projects

To create a new Project you can either:

1. Open the default SDevTC Project by selecting New from the Project menu.
2. Save and name the Project.

or

1. As 1) above.
2. Select files for the Project and add them to the file list.
3. Set file properties for executable files.
4. Save and name the Project
5. Re-open the Project with the files in the file list.

Selecting Files for Your Project

The SDevTC Debugger uses files that are output from the build process. Three types of file may be
included in the Project. These are:

• CPE Executable Files
• Symbol Files
• Binary Files

SDevTC Debugger for Windows 95 16–13

SDevTC Development Environment

Adding Files to The List of Project Files

This is achieved as follows:

1. Select the Project menu from the Menu bar.
2. Choose Files from the menu; the Files dialog appears.

3. Click to insert them into your file list.
4. Select CPE, Binary or Symbol Files from the ‘Files of Type’ drop-down list.

5. Locate the file and click .
6. When you add a file to the file list, a relevant dialog box requests you to set the file properties. For CPE

and Binary Files these will determine the downloading of files to the Target. Additionally, for Binary and
Symbol Files, they determine the unit to which they will be loaded. See the ‘Understanding File
Properties’ sections below.

Note: It is not necessary to specify the unit to which a CPE File should be loaded as this information is
held within the file itself.

7. Repeat the operation until all the files you require appear in the list. To remove a file from the list,

highlight it and click .

8. Click when you have added all the files you require.

The CPE and Binary Files will be downloaded in the order shown in the file list.

Note: As file type .CPE has been registered with the Windows 95 shell, you can run a program directly
from the shell by double-clicking on the relevant CPE File. Alternatively, if you wish to download the file to
the Target without running it, right-click the relevant file and select Download from the menu.

Note: When you add Binary and Symbol Files to a Project, they are not loaded until the Project is saved
and re-opened.

Changing the Order of Files in the File List

If you have multiple CPE and Binary Files within your Project, the order in which they are loaded during
debugging is determined by the positions you placed them in the File list.

To change the file sequence:

1. Select the Project menu from the Menu bar.
2. Choose Files from the menu.
3. Highlight a file.

4. Use or to alter the position of the file in the list.

Repeat the process until the files are in the required order.

Note: This option is only useful if you have multiple CPE and Binary Files in your Project and the load order
is important.

Specifying CPE File Properties

When you select a CPE File to include in your Project, a dialog box requests that you set the properties for
this file.

16–14 SDevTC Debugger for Windows 95

SDevTC Development Environment

These properties allow you to control the downloading of files to the Target. The options are:

• Download when Project starts . This causes the CPE File to be downloaded when the Project is
opened or reopened.

• Run after CPE has been downloaded . This causes the Unit to start running the code after
downloading the file.

You may select either or both of these properties for any CPE File in the Project.

If you do not set the properties of at least one CPE File, the Debugger will not download any files to the
Target when the Project is opened.

To change CPE File properties:

1. Select the Project menu from the Menu bar.
2. Choose Files from the menu.
3. Select the CPE File to change.

4. Click .
5. Use the check boxes to apply the properties.

6. Click .

Specifying Symbol File Properties

When you select a Symbol File to include in your Project, a dialog box requests that you confirm or specify
the unit to which the file should be loaded.

To change Symbol File properties:

1. If the required unit is not already displayed, click the down arrow until it appears.
2. Highlight the required unit.

3. Click .

4. Click .

Specifying Binary File Properties

When you select a Binary File to include in your Project, you must complete the following dialog box:

Figure 16-6: Binary File Properties Dialog Box

SDevTC Debugger for Windows 95 16–15

SDevTC Development Environment

These properties allow you to control the downloading of files to the Target:

• Download when Project starts. If this is selected the Binary File will be downloaded when the Project
is opened or reopened.

• Downloaded to a specified address. The files will be downloaded to the address specified. This
should be in OX notation for hexadecimal numbers. The default address will be zero.

Specify the Unit where the File is to be loaded. Click on the down arrow to display further units.

If you do not set the first option for at least one Binary File, the File Server will not download any Binary Files
to the Target when the Project is opened. However, all Binary Files in the Project will be available on the
relevant unit menu.

To change Binary File properties:

1. Select the Project menu from the Menu bar.
2. Choose Files from the menu.

3. Select the Binary File to change and click .
4. Select the Download when Project starts option if required and/or enter a relevant address .
5. Confirm or specify the unit where the file is to be loaded.

6. Click .

Saving Your Project

Once the files have been selected, the new Project must be saved and re-loaded before debugging can
begin.

This is achieved as follows:

1. Select the Project menu from the Menu bar.

2. Choose the Save option from the menu.

3. Give a name and path to your Project.
File names in Windows 95 are up to 250 characters long and can contain spaces.
SDevTC Debugger Project Files must be saved with the default file extension of .PSY .

4. Click .

Note: For a new Project you can choose the Restore rather than the Save option. Restore prompts you to
save the Project before reloading it.

Note: The Save or Save As options can be used to save an existing Project.

Re-opening A Project

After saving a new Project you must re-open it before working with the files which have been added to the
file list.

This is achieved as follows:

1. Select the Project menu from the Menu bar.
2. Choose the Re-open option from the menu.

Note: The Re-open icon on the toolbar can also be used to re-open a Project.

16–16 SDevTC Debugger for Windows 95

SDevTC Development Environment

Saving a Project under a New Name

The Save As option on the Project menu is used to save changes made to an existing Project, under a new
name.

The default file extension for an SDevTC Debugger Project is .PSY . When you save Project Files you must
use this extension.

To save a Project under a new name:

1. Select the Project menu from the Menu bar.
2. Choose the Save As option from the menu.
3. Give a name and path to the renamed Project.

4. Click .

Restoring a Project

The Restore option on the Project menu is used to re-load a Project in the state in which it was last saved,
abandoning any changes made since the last save.

To restore a Project:

1. Select the Project menu from the Menu bar.
2. Choose the Restore option from the menu.

Opening an Existing Project

When you launch the SDevTC Debugger, the last Project you worked on will be loaded automatically.

To open a different Project:

1. Select the Project menu from the Menu bar.
2. Choose the Open option from the menu.
3. Select the Project (.PSY) you require.

4. Click .

Note: An existing Project can also be opened via the Open Project icon found on the toolbar.

Note: As file type .PSY has been registered with the Windows 95 shell, you can run a Project by double-
clicking on the relevant .PSY file within the shell. Alternatively, if you only wish to load the Project into the
Debugger, right-click the relevant file and select Debug from the menu.

Manually Loading Files into a Project

External Files can be downloaded at any time. They are not saved with the Project.

External CPE Files are downloaded to the Target as follows:

1. Click on the Unit menu at the base of the Debugger screen.
2. Choose the Download CPE option from the menu.
3. Choose the External File option.
4. Browse and select the required CPE File.

5. Click .

Note: You can also download a CPE File by double/clicking it within the shell.

Symbol Files can be loaded into the Debugger as follows:

SDevTC Debugger for Windows 95 16–17

SDevTC Development Environment

1. Click on the relevant Unit menu at the base of the Debugger window.
2. Choose the Load Symbols option from the menu.
3. Browse and select the required Symbol File.

4. Click .

SDevTC Debugger Productivity Features

To enable you to work faster and more efficiently when using the SDevTC Debugger, the following two
features speed up your control of the debugging runs.

• Toolbar Icons

• Hot Keys

Toolbar Icons

The toolbar contains the group of icons shown above. Icons provide a quicker means of activating
commands and setting properties.

From left to right they represent the following actions:

• Open a Project File
• Save and then reopen the current Project
• Open a new View
• Switch to the next View
• Split the Active Pane horizontally
• Split the Active Pane vertically
• Delete the Active Pane
• Set the default color scheme

The Show Toolbar option on the Project menu is used to toggle the menu bar on and off. When the option
is ticked the toolbar is displayed.

To toggle the toolbar:

1. Select the Project menu from the Menu bar.
2. Choose the Show Toolbar / Hide Toolbar option from the menu.

Note: Every Pane type has its own, additional toolbar which is appended to the main toolbar when that
Pane is made Active.

Hot Keys

The following Hot Keys can be used instead of the Debugger menu options:

Table 16-1: Debugger Hot Keys

F2 Split horizontal
F3 Split vertical
F4 Delete current pane
F5 Toggle breakpoint on and off
F6 Run to cursor
F7 Step into a subroutine
F8 Step over a subroutine

16–18 SDevTC Debugger for Windows 95

SDevTC Development Environment

F9 Run a program
Esc Halt a program
Ctl+Shft+D Change pane to Disassembly Pane
Ctl+Shft+L Change pane to Local Pane
Ctl+Shft+M Change pane to Memory Pane
Ctl+Shft+R Change pane to Register Pane
Ctl+Shft+S Change pane to Source Pane
Ctl+Shft+W Change pane to Watch Pane
Shft+Arrow Keys Activates adjacent pane in the specified

direction. Where more than one, the
current caret position determines the
pane to be made active.

Ins New view

Note: These keys will all operate within the Active Pane.

SDevTC Views

A View appears in the main window of the SDevTC Debugger. It is used to display debugging information
according to your requirements and to control step and trace actions during debugging.

When an SDevTC Project is first created it has a default pane layout.

Views can be split into as many panes as you wish. These can be of the same or different types.

Only one pane is Active at any time; it will be displayed in a color scheme different from the others.

Note: Having created a View of different panes you can save this as a View File either in, or independent
of, the Project. Further information about panes can be found in Working With Panes and Selecting A
Pane Type .

Creating an SDevTC View

Within an SDevTC Project you can create as many Views as required. In turn, each View can be split into
as many panes as you need.

When you open a new Project, one View is displayed for each unit connected.

SDevTC Debugger for Windows 95 16–19

SDevTC Development Environment

Figure 16-7: Default View

To create a new View:

1. Select the View menu from the Menu bar.
2. Choose the New option from the menu.
3. From the Choose Unit box specify the unit for which you wish to create a new View.

Note: The Choose Unit box will not appear when you are connected to a single unit.

You can also use the New View icon on the toolbar to create a new view or, you can use the Hot Key
Insert .

Alternatively, you can open a new view from the relevant unit button, in which case you won’t be prompted
for the required unit.

Note: A new view is supplied with the title ‘Default View’. The View Name option in the View menu should
be used to give it a title.

Note: Views can be saved either inside or outside of SDevTC Projects.

Cycling between Views

If you have more than one view open within a Project you can cycle between them as follows:

1. Select the View menu from the Menu bar.
2. Choose the Next View option.

The views are cycled around until you see the one you require. All views appear on the View list regardless
of the units for which they have been specified.

16–20 SDevTC Debugger for Windows 95

SDevTC Development Environment

Alternatively, the Next View icon on the toolbar , the Hot Keys Ctl + F6 or Ctl + TAB can be used to
cycle between views.

Saving Your Views

Any number of views can be saved within a Project.

All open views will automatically be saved when you save the Project and will be opened when the Project
is re-opened.

View files can also be saved independently of Projects using the Save As command on the View menu.

This is achieved as follows:

1. Arrange the panes as you require.
2. Select the View menu from the Menu bar.
3. Choose the Save As option from the menu.
4. Give the View a name and path.

5. Click .

Note: The name you give the view file is not displayed on the view. To give a view a title use the View
Name option on the View menu.

Naming a View

Because you can use many views within a Project, it is helpful to give each view an individual title.

1. Select the View menu from the Menu bar.
2. Choose the View Name option from the menu.
3. Enter the view name in the edit box.

4. Click . The name appears at the top of the view.

Note: This is not the name of the File. See the note in Saving Your Views above for further details.

SDevTC Debugger for Windows 95 16–21

SDevTC Development Environment

Changing Color Schemes in Views

To change the colors for a particular unit:

1. Activate a view/pane on the unit that you wish to set colors for.
2. Select the View menu from the Menu bar.
3. Choose Set Default Colours... from the menu.

The following areas may be changed for the active unit:

• Inactive Pane background color
• Inactive Pane text color
• Active Pane background color
• Active Pane text color
• PC text color
• Changed information color
• Breakpoint background color
• Breakpoint text color

4. Click on the box representing the area you wish to amend.

A standard Windows dialog box allows you to choose from a range of standard or customized colors.

Figure 16-8: Set Default Colours Dialog Box

5. Select the required color(s).
6. The selected color scheme will be displayed for all visible Views.

7. Select to retain the revised colors or to revert to the original scheme.

Unit colors can also be amended by clicking on the Set Colour icon on the toolbar.

Working With Panes

When an SDevTC Project is first set up, the default view contains a default pane layout for each unit
connected. However, this view can be split into as many panes as you wish. These can be of the same or
different types. Only one of the panes is Active; it will be displayed in a color scheme different from the
others.

A pane can be made Active via any of the following methods:

• Clicking on it.

16–22 SDevTC Debugger for Windows 95

SDevTC Development Environment

• Changing the Active view. The first pane created for that view will become Active.
• Using Shift and the appropriate arrow key to activate the pane in the specified direction.
• Clicking the right mouse button on the required pane and selecting from the displayed menu.

Splitting Panes

A view can be divided into as many panes as you wish. Click on the one you wish to split to make it active.

Then:

1. Select the View menu from the Menu bar.
2. Choose either Split Vertical or Split Horizontal from the menu.

The Active Pane is split in half, either vertically or horizontally, depending on your choice.

You can also split a pane horizontally or vertically via the icons on the toolbar or by using the hot
key F2 to split horizontally or F3 to split vertically.

Note: When you split a pane the two halves will both be of the same type as the original. The font for the
new pane will also match that of the original.

Changing Pane Sizes

To change the size of panes:

Drag the splitter bar between the panes with the mouse.

The size and position of the panes is saved when you save the view or the Project.

Note: Splitter bars only control the areas between the panes. If you wish to change the size of the
Debugger window you have to use the borders of the window itself.

Deleting a Pane

The Delete Pane option on the View menu is used to delete a pane within a view, as follows:

1. Click on the required pane to make it active.
2. Select the View menu from the Menu Bar.
3. Choose Delete Pane from the menu.

Alternatively, the Delete Pane icon on the toolbar or the hot key F4 can be used to delete the active
pane.

Changing Fonts in Panes

If required, the Set Font command can be used to change the display of text within a pane, as follows:

1. Make the required pane active.
2. Select the View menu from the Menu Bar.
3. Choose Set Font from the menu.

A standard Windows dialog box allows you to select from the available fonts.

Note: When you split a Pane, the new Pane will be displayed in the same font as the original one.

IMPORTANT: You will only be able to use non proportional fonts, e.g. Courier, New Courier, Fixed Sys,
Terminal…

See Also: Changing Color Schemes In Views

SDevTC Debugger for Windows 95 16–23

SDevTC Development Environment

Scrolling within a Pane

Many panes are unable to display the full set of information that is available to the Debugger in the small
screen area shown. Therefore, the Debugger puts scroll bars onto panes where there is more information
than can be displayed on that part of the screen.

To see this additional information drag the thumb within the scroll bar or click on the arrows at either end of
the scroll bar.

You can also scroll to the region you want by clicking on the desired pane to make it active and then
clicking and holding the left mouse button before dragging it to the top or bottom of the pane.

See Also: Changing Pane Sizes

Selecting a Pane Type

There are six types of panes and you may display any number and combination.

A menu that allows you to change pane properties is accessed via the Pane menu on the Menu bar or by
right clicking the mouse on a relevant pane. These menus are unique to the type of pane that is active, but
all the menus have the option Change Pane that allows you to switch between the different types.

Additionally, icons representing each type of pane appear adjacent to the main toolbar.

• Memory Pane - Displays areas of memory within the Target

• Registers Pane - Displays the registers of the relevant CPU

• Disassembly Pane - Displays the code that the CPU is running

• Source Pane - Displays Source Files associated with program that CPU is running

• Local Pane - Displays local variables

• Watch Pane - Displays ‘watches’ or expressions

Click on the relevant icon to change the active pane.

Note: You can also use the hot keys to switch between pane types.

Icons representing menu options for the selected pane are dynamically appended to the far right of the
main tool bar. For example, if a Disassembly Pane is active, Disassembly Pane options will be displayed.

Further details about the options for each type of Pane are below.

16–24 SDevTC Debugger for Windows 95

SDevTC Development Environment

Memory Pane

There are three areas displayed on the Memory Pane: to the left is the memory address; in the middle is the
value at the displayed memory address; and to the right is an optional ASCII display of the values which
can be toggled on or off.

Figure 16-9: Memory Pane Display

You can goto an area of memory by typing the required address over the memory address or by selecting
Goto from the pane menu and entering a known address or label name to the dialog box displayed.

See Also: Moving To A Known Address Or Label

Use the scroll bars or the goto functions described above to move around the display.

The default setting for the pane is in bytes with the ASCII display set.

Change this default by selecting the Pane menu and choosing from the options:

• Bytes
• Words (bytes x 2)
• Double words (bytes x 4)
• ASCII (Toggle ASCII display on and off)
• Set Width (Changes the number of bytes displayed on a line)

Alternatively, clicking on these icons will activate the options listed above.

You can overtype the hexadecimal or ASCII displays to alter the content of the memory. A change to the
hexadecimal display will be reflected in the ASCII display and visa versa.

When you move the mouse pointer over the values, the Status line displays the Memory Address and one
of the following memory types:

• RAM
• ROM
• Invalid

Invalid memory is displayed as question marks instead of hexadecimal values and full stops instead of
ASCII.

The Set Width icon can be used to change the width of the display; click on the icon and type in the
number of bytes to be shown on each line.

The active pane can be made a Memory Pane via any one of the following methods:

1. Clicking on the Memory Pane icon on the toolbar

SDevTC Debugger for Windows 95 16–25

SDevTC Development Environment

2. Using the Pane Type option from the Pane Menu
3. Using the hot key Ctl+Shft+M

Registers Pane

The Registers Pane shows the registers of the central processing unit. These can be overtyped if required.

If the CPU has a Status Register, you can overwrite the individual bits by typing 0 or ‘R’ to reset the bit or 1
or ‘S’ to set it.

The display also shows the disassembled instruction at the Program Counter (PC) and the address of the
instruction which will be executed next.

It also shows the current status and (if relevant) exception of the CPU on the bottom line of the pane.

Figure 16-10: Registers Pane Display

When you click the right hand mouse button over a Registers Pane or select the Pane menu on the Menu
bar, you will see the Change Pane Type or Pane Operations options. Note that these are the only menu
options for this type of pane.

The active pane can be made a Registers Pane via any of the following methods:

1. Clicking on the Registers Pane icon on the toolbar
2. Using the Pane Type option from the Pane menu
3. Using the hot key Ctl+Shft+R

16–26 SDevTC Debugger for Windows 95

SDevTC Development Environment

Disassembly Pane

The Disassembly Pane shows the disassembled code from an area of memory.

Four columns are displayed. The first shows the address or label, the second displays the values at that
location in hexadecimal, the disassembled op code is shown in the third column, and the fourth contains
the op code parameters.

Figure 16-11: Disassembly Pane Display

When the cursor is positioned on a particular label in the Disassembly Pane, the relevant label name and
value will be displayed on the Status line.

The Program Counter (PC) is shown on the screen preceded by the marker ‘>‘.

When you click the right hand mouse button over a Disassembly Pane or select from the Pane menu on the
menu bar you see the following options:

• Follow PC to anchor the Pane to the Program Counter
• Goto to put the cursor at a known address or label name
• Toggle breakpoint to set and remove breakpoints
• Edit breakpoint to disable a breakpoint or make it conditional
• Run to cursor to run the Unit to the cursor position.

These options can also be activated by:

• Using the appropriate hot keys

• Clicking on these icons

The active pane can become a Disassembly Pane via any one of the following methods:

1. Clicking on the Disassembly Pane icon on the toolbar
2. Using the Pane Type option from the Pane menu
3. Using the hot key Ctl+Shft+D

See Also:

•• Anchoring Panes To The PC
•• Moving To A Known Address Or Label
•• Setting Breakpoints
•• Editing Breakpoints

SDevTC Debugger for Windows 95 16–27

SDevTC Development Environment

Source Pane

A Source Pane displays one of the Source Files included in your Project.

Figure 16-12: Source Pane Display

When you click the right hand mouse button over a Source Pane or select from the Pane menu on the
Menu bar you see the following options:

•• Follow PC to anchor the pane to the Program Counter
•• Goto PC (space)
•• Goto to put the cursor at a known address or label name
•• Source Files to swap between the Source Files in the Project
•• Toggle breakpoint to set and remove breakpoints
•• Run to cursor to run the Unit to the cursor position.

Note: If the Program Counter (PC) is at a line displayed on the pane it will be preceded by the PC point line
marker ‘>‘ and the line will be displayed in a different color.

Note: If a breakpoint exists within the pane it will display in a contrasting color.

The options listed above can also be accessed:

•• By using the appropriate hot keys

•• By clicking on these icons

Note: If the display is not set to follow the Program Counter (PC), the file displayed may not be the one
executing at the PC.

The active pane can be made a Source Pane via any one of the following methods:

1. Clicking on the Source Pane icon on the toolbar
2. Using the Pane Type option from the Pane menu
3. Using the hot key Ctl+Shft+S

See Also:

•• Anchoring Panes To The PC

•• Moving To A Known Address Or Label

•• Setting Breakpoints

•• Editing Breakpo ints

16–28 SDevTC Debugger for Windows 95

SDevTC Development Environment

Changing Source Files in the Source Pane

By default, the Source Pane displays the Source File which contains the PC or is blank if the PC is out of
range of your source.

Any of the Project Source Files can be examined in this pane by using the Source Files option from the
Source Pane menu, as follows:

1. Select the Source Pane menu from the Menu bar.
2. Choose the Source Files option from the menu.
3. Select a Source File from the list displayed.

4. Click .

Local Pane

The Local Pane is used to display all variables in the current local scope when you are debugging in C.

As you step and trace, the contents of this pane will change to display the variables in the new scope.

You can expand or collapse variables and traverse array indices.

Figure 16-13: Local Pane Display

Variables can be viewed in hexadecimal or decimal modes by right-clicking within the pane and ‘toggling’
between Hexadecimal/Decimal (on the displayed menu) as required. A tick will appear alongside
Hexadecimal when this mode is selected.

Any local variable that evaluates to a ‘C’ l-type expression can be assigned a new value.

When you select the Local Pane menu or click the right hand mouse button over a Local Pane you see the
following menu:

•• Expand/Collapse - when the cursor is over a pointer, a structure or an array
•• Increase Index - when the cursor is over an array element
•• Decrease Index - when the cursor is over an array element.

These options can also be activated by:

•• Using the appropriate hot keys

•• Clicking on these icons

Note: Use of the Local Pane is restricted to debugging in C.

The active pane can be made a Local Pane via any of the following methods:

1. Clicking on the Local Pane icon on the toolbar

SDevTC Debugger for Windows 95 16–29

SDevTC Development Environment

2. Using the Pane Type option from the Pane menu

3. Using the hot key Ctl+Shft+L

See Also: Watch Pane

• Expanding Or Collapsing A Variable
• Traversing An Index

Watch Pane

The Watch Pane is used to evaluate and browse C type expressions.

Figure 16-14: Watch Pane Display

When you select the Watch Pane menu or click the right hand mouse button over a Watch Pane, the
following menu is displayed:

•• Add Watch
•• Edit Watch
•• Delete Watch
•• Clear All Watches
•• Expand/Collapse - to view/hide the components of a structure or an array
•• Increase Index - to view higher indexed values within an array
•• Decrease Index - to view lower indexed values within an array

These options can also be activated by the following methods:

•• Using the appropriate hot keys
•• Clicking on the appropriate icons

Structures, pointers and arrays can be opened in a Watch Pane.

•• If you open a structure the members of that structure are displayed.
•• If you open a pointer it is dereferenced.
•• If you open an array the first element of the array is displayed.

The contents of the Watch Pane are saved within the View when the Project is saved.

Variables can be viewed in hexadecimal or decimal modes by right-clicking within the Pane and ‘toggling’
between Hexadecimal/Decimal (on the displayed menu) as required. A tick will appear alongside
Hexadecimal when this mode is selected.

Any Watch variable that evaluates to a ‘C’, l-type expression, can be assigned a new value.

16–30 SDevTC Debugger for Windows 95

SDevTC Development Environment

Note: The options Expand/Collapse and Increase Index ‘+’ and Decrease Index ‘-’ are only available for
arrays, pointers and structures.

See Also:

Assigning Variables

Expanding Or Collapsing A Variable

The active pane can be made a Watch Pane via any one of the following methods:

1. Clicking on the Watch Pane icon on the toolbar
2. Using the Pane Type option from the Pane menu
3. Using the hot key Ctl+Shft+W

C Type Expressions in Watch Pane

The following ‘C’ type expressions, shown in order of precedence, may be used to evaluate expressions
within the Watch View of a Project:

[] array subscript
-> record lookup
~ - * & unary prefix
* / % multiplicative
+ - additive
<< >> bitwise shifting
<> <= >= comparatives
== != equalities
& bitwise and
^ bitwise xor
| bitwise or

Note: As in C, parentheses can be used to override precedence.

Assigning Variables

Any variable that evaluates to a ‘C’, l-type expression can be assigned a new value. For example, in the
case of a de-referenced pointer, a new value can be assigned to the pointer or to the de-referenced
expression.

Variables are assigned as follows:

1. Place the caret over the required expression to make it Active.
2. Press ‘=‘.
3. Enter the new value to the displayed dialog box; this can be another expression if required.

4. Click .

In the example below, this facility was used to assign a new value of 0x80002000 to the specified pointer.
The de-referenced structure changes to reflect the amended value.

SDevTC Debugger for Windows 95 16–31

SDevTC Development Environment

Figure 16-15: Displayed Structures For Pointer Address

Figure 16-16: Amended Structures After Pointer Assigned New Variable

IMPORTANT: The expression that you are assigning and the new value, must have compatible types.

Note: Variables can be assigned while the Target is running.

Expanding or Collapsing a Variable

Pointers, structures and arrays are variables which can be expanded or collapsed in Local or Watch Panes
when you place the caret over them.

If you expand a pointer , a line will be added below the pointer for the dereferenced pointer. For example, if
the pointer is to an integer, the dereferenced pointer will display that integer.

An expanded structure will display all the elements of that structure below it.

For an expanded array the second line of the display will display the first element of the array.

To expand or collapse a variable:

1. Select the Pane menu for the Local or Watch Panes.
2. Choose the Expand or Collapse option from the menu.

When shown in the Watch Pane, expressions which can be expanded or collapsed will be prefixed as
follows:

+ this indicates an expression that can be expanded

- this indicates that the expression is expanded and can be closed.

This is followed by the expression’s type and value.

To edit an expression highlight it and press Return.

16–32 SDevTC Debugger for Windows 95

SDevTC Development Environment

Note: It is also possible to expand or collapse an expression by using the expand or collapse icons
on the Pane toolbar or by pressing SPACE.

Traversing an Index

You can traverse an index if the caret is on an array element in a Local or Watch Pane.

If an index is increased, the array will display the next array element.

Decreasing an index causes the previous array element to be displayed.

To increase or decrease an index:

1. Select the Pane menu for the Local or Watch Pane.
2. Choose the Increase Index or Decrease Index option from the menu.

Note: It is also possible to expand or collapse a variable by using the increase index or decrease index

icons on the Pane toolbar.

Adding a Watch

The Watch Pane is used to evaluate and browse C type expressions.

To add a watch or expression:

1. Make the Watch Pane the active pane.
2. Select the Watch Pane menu from the Menu bar.
3. Choose the Add Watch option from the menu.
4. Type the required expression directly into this box or click the down arrow to display expressions which

have been used previously.

Figure 16-17: Add Watch Dialog Box

5. Enter or click the required expression and select

The Debugger also offers various ‘matching’ facilities whereby you can enter a partial value and the
program will search the current and global scopes for items matching the specified criteria. These facilities
are described below in Additional Features When Entering Expressions .

Note: It is also possible to add a watch by clicking on the Add Watch icon on the Watch Pane
toolbar.

See Also:

Expression Evaluation Features

SDevTC Debugger for Windows 95 16–33

SDevTC Development Environment

Additional Features When Entering Expressions

Simple Name Completion

With this facility, the program will attempt to complete the symbol to the right of the specified expression,
as follows:

1. Enter a partial expression to the Add Watch dialog box.

2. Click or press Alt-M .

If you had specified:
attr_

The Debugger will search for all symbols beginning with attr, first in the current scope and then in the
global scope.

If a single match is found, the specified expression will be completed automatically. If more than one
match is located, a dialog box will list all matching symbols.

Figure 16-18: Symbol Selection Dialog Box

3. Highlight (select) the required symbol and click . See Multiple Selection below for further
details. The status line will display ‘no matches found’ where relevant.

Advanced Symbol Matching

In addition to basic name completion which always completes the symbol at the end of the specified
expression, extended name completion can be used to complete a symbol anywhere in the expression, as
follows:

1. Enter a partial expression.
2. Place the caret (insertion point) on or at the end of the symbol you wish to complete, and according to

the group you wish to search press one of the following key combinations:

Alt-N - All symbols (Normal)

Alt-G - Global (Static & external variables)

Alt-L - Local (Automatic variables in scope)

16–34 SDevTC Debugger for Windows 95

SDevTC Development Environment

Alt-F - Functions (Static & external)

Alt - T - Types (Typedef & structure tag)

Matching expressions will be displayed as described above.

3. Highlight (select) the required symbol(s) and click .

Note: This advanced matching facility is only available from the keyboard.

Note: You cannot symbol match on register or label names.

Wild-Card Matching

It is also possible to locate a particular symbol via the entry of a wild-card expression. This can include ‘*’s
(to match any number of characters) and ‘?’s (to match any single character) and is used as follows:

1. Enter a wild-card expression, for example, *tion .
2. Select it via Shft+Left Arrow or by double-clicking.
3. Press Alt-N .

The Debugger will continue as described for Extended Name Completion . In the example specified above,
it will search for all symbols ending in ‘tion’ , first in the current scope and then in the global scope.

Multiple Selection

If you are name completing or wild-card matching a single symbol and more than one match is found, you
can select all or some of the matches and add them to the Watch Pane at the same time. Where several
matches are found, they will be presented in an ‘extended selection’ list box.

1. Select symbols as required; use the mouse and Ctl and/or shift keys to make a specific selection or

click to highlight all the matched symbols.

Figure 16-19: Multiple Symbol Selection Dialog Box

Use the mouse and Ctl key to de-select a particular symbol from your list, or click to de-
select all the symbols

2. When your selection is complete, click ; the value in the dialog entry box will change to
<multiple selection>. Note that this value cannot be edited.

3. Click to add your selection to the Watch Pane.

SDevTC Debugger for Windows 95 16–35

SDevTC Development Environment

Note: To browse all symbols, click with no value in the dialog box, or perform wild-card
matching using ‘*’ as the wild-card.

Editing a Watch

Any of the C type expressions that you can enter into the Watch Pane can be edited as follows:

1. Make the Watch Pane the active pane.
2. Select the Watch Pane menu from the Menu bar.
3. Choose the Edit Watch option from the menu.
4. Select the watch to edit.

5. Amend as necessary and click . History and matching facilities are available via this dialog
box.

Note: It is also possible to edit a watch by clicking on the Edit Watch icon on the Watch Pane
toolbar.

Note: To view variables in hexadecimal, right-click within the pane and toggle ‘Hexadecimal/Decimal’ as
necessary. A tick will appear alongside Hexadecimal when this option has been selected.

See Also:

Additional Features When Entering Expressions

Previously Entered Expressions History List

Deleting a Watch

Any of the C type expressions entered into the Watch Pane can be deleted as follows:

1. Select the Watch Pane menu from the Menu bar.
2. Choose the Delete Watch option from the menu.
3. Select the watch and press Enter.

Note: It is also possible to delete a watch by clicking on the Delete Watch icon on the Watch Pane
toolbar or by pressing DEL.

Note: You can only delete a watch at the root of the expression, not on any expanded part of it.

Clearing All Watches

All of the C type expressions entered into the Watch Pane can be removed in one action, as follows:

1. Make the Watch Pane the active pane.
2. Select the Watch Pane menu from the Menu bar.
3. Choose the Clear All Watches option from the menu.

Note: You can also clear all watches by clicking on the Clear All Watches icon on the Watch Pane
toolbar.

16–36 SDevTC Debugger for Windows 95

SDevTC Development Environment

Debugging Your Program

The SDevTC Debugger helps you to detect, diagnose and correct errors in your programs. This is achieved
via facilities which enable you to step and trace through your code in order to examine local and global
variables, registers and memory.

Breakpoints can be set wherever you need them at C and Assembler levels. If required, these breaks can
be made conditional on an expression. Additionally, selected breakpoints can be disabled for particular
runs.

Your choice of views depends on the level at which you are debugging. For example, it is appropriate to
use a Register Pane for assembler debugging and a Local Pane when debugging in C.

Specifying the Continual Update Rate

It is possible to adjust the rate at which the Debugger updates information while the Target is running. This
is particularly important for Targets which connect independently of a pollhost() since rapid connection
rates may cripple the Target. This is achieved as follows:

1. Select Continual Update Rate from the Project option on the main menu or press Ctl+I . A dialog box
displays the current rate in milliseconds:

Figure 16-20: Update Rate Dialog Box

2. Enter a new value and select . The rate is saved between all debugging sessions and not as
part of a project.

Forcing an Update

During continual update, the information you see in the Debugger windows won’t be updated until the next
connection. Therefore, the slower the update rate, the longer it will be before exceptions can be spotted.
However, it is possible to force an update by pressing Ctl+U or selecting the Update option from Debug on
the main menu.

Setting Breakpoints

Breakpoints can be set in the Source and Disassembly Panes. They can be absolute (i.e. always break) or
conditional upon an expression.

They are displayed in the pane as a different colored bar.

To set a breakpoint:

1. Make a Source or Disassembly Pane active.
2. Click on the instruction or line at which you want to set the break.
3. Select the Debug menu from the Menu bar.
4. Choose the Toggle Breakpoints option from the menu.

SDevTC Debugger for Windows 95 16–37

SDevTC Development Environment

Breakpoints can be made conditional upon an expression that you set by using the Edit Breakpoint dialog
box found via the Breakpoints List on the Unit Menu.

A Project can have many breakpoints set and they are saved when the Project is saved. They are restored
relative to Assembler labels wherever possible. This ensures they are preserved, even when you alter the
source code and rebuild.

Breakpoints can be removed by clicking on the color bar and reversing the toggle options taken to create
them.

Note: Breakpoints can also be set and removed via the F5 key or the set / unset breakpoint icons on the

Pane toolbar.

Editing Breakpoints

The Breakpoints option on the Unit menu can be used to enable or disable breakpoints for a particular
debugging run or to make the breakpoints conditional on an expression that you set.

The Breakpoints option on the Unit menu shows you a pop-up list of all the breakpoints currently set in the
Project, the addresses where they are located, and their label (if they exist).

Each enabled breakpoint will have a tick beside it.

To edit breakpoints:

1. Select the Unit menu by clicking on the Unit button.
2. Choose the Breakpoints option from the menu.
3. Select the breakpoint you wish to edit.

Figure 16-21: Edit Breakpoint Dialog Box

When you select a breakpoint from the list displayed on the Unit menu, the Edit Breakpoint dialog box
shown above appears.

The enabled check box allows you to enable and disable breakpoints. When the check box is set, the
breakpoint is enabled. Only enabled breakpoints will be included in a debugging run.

There are two types of breaks:

•• Break at Point is a standard break.
• Break if expression is true is a conditional break.

4. Select the type of break you require from the Type box pull-down list.

Both options display the breakpoint address in the Location box. The location can be overtyped to
move a break.

When the Break if expression is true option is enabled to create a conditional breakpoint, enter a C-
like expression or a label in the Expression box.

16–38 SDevTC Debugger for Windows 95

SDevTC Development Environment

Use to leave the dialog box without saving the changes you have made.

Use to delete the selected breakpoint.

5. Click when you have made all your changes.

Note: A quick way to make a breakpoint conditional is to place the cursor over the breakpoint and use the
hot keys Shift F5 .

Any of the following methods can be used to create, remove and edit breakpoints:

• The F5 key
• The Breakpoint options from the Source or Disassembly Pane menus

• The Breakpoint icons from the Pane toolbars

Stepping into a Subroutine

The Step Into command allows you to trace the execution of the program one step at a time and so isolate
any bugs that might be present.

When you Step Into a subroutine call, the Program Counter moves to the start of the subroutine and
displays the relevant code. At the end of the subroutine you will be returned to where it was called from.

At Assembler level, a debugging step is the execution of a single instruction.

If you wish to use the Step Into command at Source level you must make the Source Pane active. In this
case, one line at a time will be executed in each step and any subroutines or calls within that line will be
stepped into.

To Step Into a subroutine during debugging:

1. Select the Debug menu from the Menu bar.
2. Choose the Step Into option from the menu.

Note: Alternative ways of Stepping Into a subroutine are to use the Step Into icon on the Unit toolbar (at

the bottom of the Debugger window) or to press F7. Note that it is possible to use the Step Into icon
for a non-active view.

Stepping over a Subroutine

When you use the Step Over command, the subroutine is executed but not displayed and the Program
Counter moves to the next line of calling routine code.

At Assembler level, a debugging step is the execution of a single instruction.

If you wish to use the Step Over command at Source level, you must first make the Source Pane active. In
this case, one line at a time will be executed in each step and any subroutines or calls within that line will be
performed.

To Step Over a subroutine:

1. Select the Debug menu from the Menu bar.
2. Choose the Step Over option from the menu.

Note: Alternative ways of Stepping Over a subroutine are to use the Step Over icon on the Unit toolbar

 or to press F8. Note that you can use the Step Over icon for a non-active view.

SDevTC Debugger for Windows 95 16–39

SDevTC Development Environment

Running to the Current Cursor Position

The Run to Cursor command can be used during debugging within the Source and Disassembly Panes.

To run to the current cursor position:

1. Make a Source or Disassembly Pane active.
2. Click on the displayed code at the point you want to run to.
3. Select the Source or Disassembly menu from the Menu bar.
4. Choose the Run To Cursor option from the menu.

If the Unit does not reach the cursor position it will continue running.

Note: Alternative methods of running to the cursor are to click on the Run To Cursor icon on the Pane

toolbar or to use the hot key F6.

Note: You can use Run To Cursor while the unit is running to make it stop at the cursor position.

Running Programs

The Run command causes the CPU of the specified unit to start running.

It will continue until it meets a breakpoint, a processor exception, or is stopped by the Stop or Run To
Cursor commands.

During a debugging run, the various panes will show the progress of the run.

To start the program running:

1. Select the Debug menu from the Menu bar.
2. Choose the Go option from the menu.

Note: Alternative ways to start the run are to click the Start button on the relevant Unit toolbar or to
press F9.

Stopping a Program Running

The Stop command halts the CPU of the specified unit as soon as possible.

It is specified as follows:

1. Select the Debug menu from the Menu bar.
2. Choose the Stop option from the menu.

Note: Alternative ways to stop the run are to click the Stop button on the relevant Unit toolbar or to
press Esc.

Moving the Program Counter

The program counter (PC) can be set via the Set PC command.

This command moves the program counter to the current caret position.

It is found on the Pane menus for Source and Disassembly Panes and is set as follows:

1. Make a Source or Disassembly Pane active.
2. Place the caret where you wish the PC to move to.
3. Click the right hand mouse button to call the Pane menu.
4. Select the Set PC option from the menu.

With this command, no instructions are executed between the previous and new PC position.

16–40 SDevTC Debugger for Windows 95

SDevTC Development Environment

The opposite command to Set PC is Goto PC, which takes the caret to the position of the Program
Counter.

Note: An alternative way to activate the Set PC command is by using the hot key Shift+Tab.

Moving the Caret to the PC

The caret point can be placed at the program counter address via the Goto PC command.

This command is found on the Pane menus for Source and Disassembly Panes.

To set the caret point:

1. Make a Source or Disassembly Pane active.
2. Click the right hand mouse button to call the Pane menu.
3. Select the Goto PC option from the menu.

Goto PC is the opposite command to Set PC which sets the Program Counter to the current caret position.

Note: Alternatively, pressing the ‘space’ bar will directly place the caret point at the program counter
address.

Moving to a Known Address or Label

The Goto command is available on the Source, Disassembly and Memory Pane menus. It is used to put the
caret and PC at a known address, label name, register name or value of a specified C expression as
described below:

1. Make the Source, Disassembly or Memory Pane active.
2. Click the right hand mouse button to call the Pane menu.
3. Select the Goto option from the menu.
4. A dialog box appears in which you enter the memory address, symbol name, register name or C

expression.

5. Click to place the cursor at the entry point.

Figure 16-22: Go To Expression Dialog Box

6. Type the required expression directly in this box or click the down arrow to display expressions which
have been entered previously.

7. Enter or select the required expression and click . Note that a hexadecimal address must be
prefixed with the string ‘0x’.

As the Goto action will take you to the value of the specified expression, note the consequences when you
enter a name containing C debug information as well as an Assembler label.

For example, if _ramsize is specified you will be taken to the value of _ramsize, not to where it is
defined. This is because the C expression evaluator sees the C definition of _ramsize first and then
evaluates it. To Goto this address, you must enter either &_ramsize or :_ramsize.

SDevTC Debugger for Windows 95 16–41

SDevTC Development Environment

Alternatively, you could Goto main (as functions evaluate to their addresses). To Goto an offset from main,
enter: ‘:main+offset’, ‘&main+offset’ or ‘(int)main+offset’. This is because main by itself has the type int ()
which cannot be added.

Note: When you have successfully ‘gone to’ an expression in a Memory Pane, the ‘pointed to’ word is
enclosed in a box. This will remain until you Goto something else or anchor the Pane to an expression.

See Also:

Anchoring Memory Panes

Expression Evaluation Features

Previously Entered Expressions History List

Note: Alternatively, you can activate the Goto command via the Goto icon on the toolbar or the hot
key Ctl G .

Expression Evaluation Features

Register Names

Register names can be specified in any dialog box where expressions can be entered. By default, the
evaluator looks for C symbols first, so any variables which are the same as register names will be shown
instead. If a name is being interpreted as a register it will be prefixed by a ‘$’.

It is recommended that you use this ‘$’ prefix when entering register names to explicitly tell the evaluator
that it is looking at a register.

Note: Registers have a C type of ‘int’.

Typecasts and Typedefs

Typecasts can be entered into an expression via the usual C syntax.

If you entered ‘(int*)$fp’ to a Watch Pane you would see the following:

+int*(int*)$fp = 0x8000ff00

Typecasting also works for structure tags. However, you are not required to enter the keyword ‘struct’
when casting to a structure tag.

-Tester* (Tester*)$fp = 0x807ff88
 -Tester
 +unsigned char* m_pName = 0x00000645
 +unsigned char* mpLongName = 0xFFFFFFFF

You can also cast to typedefs; for example, entering ‘(daddr_t)p’ will produce:

long (daddr_t)p = 0x00003024

Labels

Labels can also be included in a C expression. The evaluator looks for C level information first and then
label information. If it finds a label, it will prefix it with a ‘:’.

It is recommended that you use this prefix when entering labels to explicitly tell the evaluator that it is
looking at a label.

Note: Labels have a C type of ‘int’.

Functions

If you include a function name in an expression, its value will be the same as its address. It will appear in a
Watch window as follows:

int () main = (...) (0x80010BFC)

16–42 SDevTC Debugger for Windows 95

SDevTC Development Environment

Note: This is contrary to C where the value of a function is what is returned from the function when it is
executed.

Note: It is recommended that you access the address of a function via the ‘&’ operator or the Assembler
label.

Expression Evaluation Name Resolution

In summary, the search order for a name in an expression is as follows:

1. Escaped Register Names (prefix ‘$’)
2. Escaped Label Names (prefix ‘:’)
3. C Names
4. Register Names
5. Label Names

Previously Entered Expressions History List

Once an expression has been specified via a Goto or Add/Edit Watch dialog box, it will be stored in a
history buffer.

When you next access one of these dialog boxes, click the down arrow to display a listing of these values.

At this point you can enter a new expression to the dialog box or select one from the list and click

. The selected expression can also be edited at this point.

Note: The most recent expressions used are held at the top of the list.

Anchoring Panes to the PC

By default the Source and Disassembly Panes are anchored to the Program Counter (PC). This means that
whenever possible the instruction or line at the PC is always displayed in the pane.

The Follow PC property is toggled as follows:

1. Make a Source or Disassembly Pane Active.
2. Click the right hand mouse button to call the Pane menu.
3. Select the Follow PC option from the menu.

Note: This option is also available from the Source and Disassembly Pane toolbar or from the Source
or Disassembly menus on the Menu bar.

Anchoring Memory Panes

Anchoring a Memory Pane has the same function as using Goto on every Debugger update.

To anchor a Memory Pane:

1. Select Anchor... from the Pane menu or press Ctl+A when a Memory Pane is active.
2. Enter an expression.

3. Select .

The specified expression will appear in an indicator bar on the pane. If this goes red, the expression
cannot be evaluated in the current scope. Otherwise, the pane will be ‘anchored’ to the value of the
expression and a box will be drawn around the anchor point.

You can edit the expression by clicking the indicator.

SDevTC Debugger for Windows 95 16–43

SDevTC Development Environment

To turn off anchoring:

1. Call up the Anchor dialog box.
2. Clear the box.

3. Select .

Identifying Changed Information

Any changes to variables since the last debugging step are displayed in a color of your choice on all panes
except for Disassembly and Source.

This color is set via the Set Default Colour option from the View menu.

See Also:

Changing Color Schemes in Views

Closing the Debugger

Closing the Debugger without Saving Your Changes

The Quit option on the Project menu stops the Debugger running but does NOT save the current Project.

To close the Debugger without saving your changes:

1. Select the Project menu from the Menu bar.
2. Choose the Quit option from the menu.

Closing the Debugger and Saving Your Changes

The Exit option on the Project menu saves the current Project at the latest state and stops the Debugger
running.

To close the Debugger and save your changes:

1. Select the Project menu from the Menu bar.
2. Choose the Exit option from the menu.

Note: It is also possible to close the Project by clicking on the X icon on the system menu shown in the top
right corner of the Debugger window.

Note: Next time you open the Debugger, the last project you saved will be launched automatically.

See Also:

Saving Your Project

16–44 SDevTC Debugger for Windows 95

SDevTC Development Environment

SDevTC Development Environment

Appendix A:
Error Messages

A–2 Error Messages

SDevTC Development Environment

Error Messages A–3

SDevTC Development Environment

Overview

This appendix documents SDevTC error messages and is divided into the following sections:

Assembler Error Messages
PSYLINK Error Messages
PSYLIB Error Messages

Error Message Format

In the list below, %x represents the variable part of the error message, as follows:

%s is replaced by a string
%c is replaced by a single character
%d is replaced by a 16-bit decimal number
%l is replaced by a 32-bit decimal number
%h is replaced by a 16-bit hexadecimal number
%n is replaced by a symbol name
%t is replaced by a symbol type, e.g. section, symbol or group.

Assembler Error Messages

‘%n’ cannot be used in an expression

%n will be the name of something like a macro or register

‘%n’ is not a group

Group name required

‘%n’ is not a section

Section name expected but name %n was found

Alignment cannot be guaranteed

Warning of attempt to align that cannot be guaranteed due to the base alignment of the current section

Alignment’s parameter must be a defined name

In call to alignment () function

Assembly failed

Text of the FAIL statement

Bad size on opcode

E.g. attempt to use .b when only .w is allowed

Branch (%l bytes) is out of range

Branch too far

Branch to odd address

Warning of branch to an odd address

A–4 Error Messages

SDevTC Development Environment

Cannot POPP to a local label

E.g. POPP @x

Cannot purge - name was never defined
Case choice expression cannot be evaluated

On case statement

Code generated before first section directive

Code generating statements appeared before first section directive

Could not evaluate XDEF’d symbol

XDEF’d symbol was equated to something that could not be evaluated

Could not open file ‘%s’
Datasize has not been specified

Must have a DATASIZE before DATA statement

Datasize value must be in range 1 to 256

DATASIZE statement

Decimal number ille radix

Specified decimal digit not legal in current radix

DEF’s parameter must be a name

Error in DEF () function reference

Division by zero
End of file reached without completion of %s construct

E.g. REPT with no ENDR

ENDM is illegal outside a macro definition
Error closing file

DOS close file call returned an error status

Error creating output file

Could not open the output file

Error creating temporary file

Could not create specified temporary file

Error in assembler options
Error in expression

Similar to syntax error

Error in floating point number

In IEEE32 / IEEE64 statement

Error in register list

Error in specification of register list for MOVEM / REG

Error Messages A–5

SDevTC Development Environment

Error opening list file

DOS open returned an error status

Error reading file

DOS read call returned an error status

Error writing list file

DOS write returned an error status or disk full

Error writing object file

DOS write call returned an error or disk is full

Error writing temporary file

Disk write error, probably disk full

Errors during pass 1 - pass 2 aborted

If pass 1 has errors then pass 2 is not performed

Expanded input line too long

1024 chars<M=>

Expected comma after << >>

<<...>> bracketed parameter in MACRO call parameter list

Expected comma after operand
Expected comma between operands
Expected comma between options

In an OPT statement

Expecting ‘%s’ at this point

Expecting one of ENDIF/ENDCASE etc. but found another directive

Expecting ‘+’ or ‘-’ after list command

In a LIST statement

Expecting ‘+’ or ‘-’ after option

In an OPT statement

Expecting a number after /b option

On Command line

Expecting comma between operands in INSTR
Expecting comma between operands in SUBSTR
Expecting comma or end of line after list

In { ... } list

Expecting ON or OFF after directive

In PUBLIC statement

Expecting options after /O

On Command line

A–6 Error Messages

SDevTC Development Environment

Expecting quoted string as operand
Expression must evaluate

Must be evaluated now, not on pass 2

Fatal error - macro exited with unterminated %s loop

End of macro with unterminated WHILE/REPT/DO loop.

Due to the way the assembler works, this must be treated as a fatal error

Fatal error - stack underflow - PANIC
Assembler internal error - should never occur!
File name must be quoted
Files may only be specified when producing CPE or pure binary output

In FILE attribute of group

Forward reference to redefinable symbol statements.

The value used in the forward reference was the last value the symbol was set to.

Function only available when using sections
Group ‘%n’ is too large (%l bytes)

Group exceeds value in SIZE attribute

GROUP’s parameter must be a defined name

In GROUP () function call

GROUPEND’s parameter must be a group name

Error in call to GROUPEND () function

GROUPORG’s parameter must be a group

In call to GROUPORG () function

GROUPSIZE’s parameter must be a group name

Error in call to GROUPSIZE () function

IF does not have matching ENDIF/ENDC
Illegal addressing mode

Addressing mode not allowed for current op code

Illegal character ‘%c’ (%d) in input

Strange (e.g. control) character in input file

Illegal character ‘%c’ in opcode field
Illegal digit in suffixed binary number

In alternate number form 101b

Illegal digit in suffixed decimal number

In alternate number form 123d

Illegal digit in suffixed hexadecimal number

In alternate number form 1abh

Error Messages A–7

SDevTC Development Environment

Illegal group name
Illegal index value in SUBSTR
Illegal label

Label in left hand column starts with illegal character

Illegal name for macro parameter

In macro definition

Illegal name in command

Target name in ALIAS statement

Illegal name in locals list

In LOCAL statement

Illegal name in XDEF/XREF list
Illegal parameter number

Maximum of 32 parameters

Illegal section name
Illegal size specifier for absolute address

Can only use .w and .l on absolute addressing

Illegal start position/length in INCBIN
Illegal use of register equate

E.g. using a register equate in an expression

Illegal value (%l)
Illegal value (%l) for boundary in CNOP
Illegal value (%l) for offset in CNOP
Illegal value for base in INSTR
Illegal zero length short branch

68000 short branches must not be zero offset

Initialized data in BSS section

BSS sections must be uninitialized

Instruction moved to even address

Warning that a padding byte was inserted

Label ‘%n’ multiply defined
LOCAL can only be used inside a macro

LOCAL statement found outside macro

Local labels may not be strings

@x EQUS ... is illegal

Local symbols cannot be XDEF’d/XREF’d
MEXIT illegal outside of macros
Missing ‘ (‘ in function call
Missing ‘)’ after function parameter (s)
Missing ‘)’ after file name

In FILE attribute

A–8 Error Messages

SDevTC Development Environment

Missing closing bracket in expression
Missing comma in list of case options

In =... case selector

Missing comma in XDEF/XREF list
MODULE has no corresponding MODEND
Module may not end until macro/loop expansion is complete

If a loop / macro call starts inside a module then there must not be a MODEND until the loop / macro
call finishes

Module must end before end of macro/loop expansion - MODEND inserted

A module started inside a loop / macro call must end before the loop / macro call does

More than one label specified

Only one label per line (can occur when second label does not start in left column but ends in ‘: ’)

Move workspace command can only be used when downloading

In WORKSPACE statement

Names declared with local must not start with ‘%c’

In LOCAL statement

NARG can only be used inside a macro

Use of NARG outside macro

NARG’s parameter must be a number or a macro parameter name

Illegal operand for NARG () function

No closing quote on string
No corresponding IF

ENDIF/ELSE without IF

No corresponding DO

UNTIL without DO

No corresponding REPT

ENDR without REPT

No corresponding WHILE

ENDW without WHILE

No matching CASE statement for ENDCASE

ENDCASE without CASE

No source file specified

No source file on command line

Non-binary character following %
Non-hexadecimal character ‘%c’ encountered

In HEX statement

Error Messages A–9

SDevTC Development Environment

Non-hexadecimal character starting number

Expecting 0-9 or A-F after $

Non-numeric value in DATA statement
OBJ cannot be specified when producing linkable output

OBJ attribute on group

Odd number of nibbles specified

In HEX statement

OFFSET’s parameter must be a defined name

Error in OFFSET () function call

Old version of %n cannot be purged

Only macros can be purged

One string equate can only be equated to another

Attempt to equate to expression, etc.

Only one of /p and /l may be specified

On Command line

Only one ORG may be specified before SECTION directive
Op-code not recognized
Operand value %d will be sign extended

Warning given in 68000 MOVEQ instructions when operand is in the range 128-255 which will be sign
extended, giving -1 to -128

Option stack is empty

POPO without PUSHO

Options /l and /p not available when downloading to target

On Command line

ORG ? can only be used when downloading output
ORG address cannot be specified when producing linkable output

No ORG group attributes when producing linkable output

ORG cannot be used after SECTION directive
ORG cannot be used when producing linkable output
ORG must be specified before first section directive

When using sections only one ORG statement may appear before all section statements (other than as
group attributes)

Out of memory, Assembler aborting
Out of stack space, possibly due to recursive equates

Assemblers stack is full, possible cause is recursive equates, e.g. x equ y+1 , y equ x*2

Overflow in DATA value

DATA value too big

A–10 Error Messages

SDevTC Development Environment

Overlay cannot be specified when producing linkable output

No OVER group attributes when producing linkable output

Overlay must specify a previously defined group name

Error in OVER group attribute

Parameter stack is empty

POPP encountered but nothing to pop

POPP must specify a string or undefined name
Possible infinite loop in string substitution

E.g. reference to x where x is defined as x equs x+1

Previous group was not OBJ’d

OBJ () attribute specified but previous group had no obj attribute to follow on from

SDevTC needs DOS version 3.1 or later
Purge must specify a macro name
Radix must be in range 2 to 16
REF’s parameter must be a name
Error in REF () function reference
Register not recognized

Expecting a register name but did not recognize

Remainder by zero

As for division by 0 but for % (remainder)

Repeat count must not be negative

REPT statement error

Replicated text too big

Text being replicated in a loop must be buffered in memory but this loop was too big to fit

Resident SCSI drivers not present

PSYBIOS does not appear to be loaded

SCSI card not present - assembly aborted
SECT’s parameter must be a defined name

Error in SECT () function call

SECTEND’s parameter must be a section name

Error in call to SECTEND () function

Section stack is empty

POPS without PUSHS

Section was previously in a different group

Section assigned to a different group on second invocation

SECTSIZE’s parameter must be a section name

Error in call to SECTSIZE () function

Error Messages A–11

SDevTC Development Environment

Seek in output file failed

DOS seek call returned error status

Severity value must be in range 0 to 3

In INFORM statement

SHIFT can only be used inside a macro

SHIFT statement outside macro

Short macro calls in loops/macros must be defined before loop/macro
Short macros may not contain labels
Size cannot be specified when producing linkable output

SIZE attribute on group

Size specified in /b option must be in range 2 to 64

On command line

Square root of negative number
Statement must have a label

No label on, for example, EQU op

STRCMP requires constant strings as parameters
String ‘%n’ cannot be shifted

String specified in SHIFT statement is not a multi-element string (i.e. {...} bracketed) and so cannot be
shifted.

STRLEN’s operand must be a quoted string
Symbol ‘%n’ cannot be XDEF’d/XREF’d
Symbol ‘%n’ is already XDEF’d/XREF’d
Symbol ‘%n’ not defined in this module

Undefined name encountered

Syntax error in expression
Timed out sending data to target

Target did not respond

Too many characters in character constant

Character constants can be from 1 to 4 characters

Too many different sections

There is a maximum of 256 sections

Too many file names specified

On command line

Too many INCLUDE files

Limit of 512 INCLUDE files

Too many INCLUDE paths specified

Too many INCLUDE paths in /j options on command line

A–12 Error Messages

SDevTC Development Environment

Too many output files specified

Maximum of 256 output files

Too many parameters in macro call

Maximum number of parameters (32) exceeded

Too much temporary data

Assembler limit of 16m bytes of temporary data reached

TYPE’s parameter must be a name

Call of TYPE () function

Unable to open command file

From Command line

Undefined name in command

Target name in ALIAS statement

Unexpected case option outside CASE statement

Found =... statement outside CASE/ENDCASE block

Unexpected characters at end of Command line
Unexpected characters at end of line

End of line expected but there were more characters encountered (other than comments)

Unexpected end of line

Line ended but more input was expected

Unexpected end of line in macro parameter
Unexpected end of line in list parameter

In { ... } list

Unexpected MODEND encountered

MODEND without preceding MODULE

UNIT can only be specified once

In UNIT statement

UNIT cannot be used when producing linkable output

In UNIT statement

Unknown option

In OPT statement

Unknown option /%c

Unknown option on Command line

Unrecognized attribute in GROUP directive
Unrecognized optimization switch ‘%c’

In OPT statement or Command line

Error Messages A–13

SDevTC Development Environment

User pressed Break/Ctrl-C

Assembly aborted by user

XDEF’d symbol %n not defined

Symbol was XDEF’d but never defined

XDEF/XREF can only be used when producing linkable output
Zero length INCBIN

Warning of zero length INCBIN statement

Psylink Error Messages

%t %n redefined as section

New definition of previously defined symbol

%t ‘%n’ redefined as group

New definition of previously defined symbol

%t ‘%n’ redefined as XDEF symbol

New definition of previously defined symbol

Attempt to switch section to %t ‘%n’

Non-section type symbol referenced in section switch

Attempt to use %t ‘%n’ as a section in expression

Section type symbol required

Branch (%l bytes) is out of range

68000 branch instruction cannot reach target

Branch to odd address

Warning that 68000 branch instruction goes to an odd address

Code in BSS section ‘%n’

BSS type sections should not contain initialized data

COFF file has incorrect format

COFF format files are those produced by Sierra C cross compiler, etc.

Different processor type specified

Object code is for different processor type than target or attempt was made to link code for different
processor types

Division by zero
Error closing file

DOS close file call returned error status

Error in /e option

On Command line

A–14 Error Messages

SDevTC Development Environment

Error in /o option

On Command line

Error in /x option

On Command line

Error in command file
Error in Linker options

On Command line

Error in REGS expression
Error reading file %f

DOS read file call returned error status

Error writing object file

DOS write file call returned error status - probably disk full

Errors during pass 1 - pass 2 aborted

Pass 2 does not take place if there were errors on Pass 1

Expecting a decimal or hex number

/o option on Command line

File %f is in out-of-date format

File should be rebuilt be reassembling

File %f is not a valid library file
File %f is not in PsyLink file format
Group ‘%n’ is too large (%l bytes)

Group is larger than its size attribute allows

Group ‘%n’ specified with different attributes

Different definitions of a group specify different attributes

Illegal XREF reference to %t ‘%n’

Object file defines xref to symbol which cannot be xref’d, e.g. a Section name

Illegal zero length short branch

68000 short branches must not have offset of 0

Multiple run addresses specified

More than one run address specified

No source files specified

No source file on Command line

Object file made with out-of-date assembler

File should be rebuilt before reassembling

Error Messages A–15

SDevTC Development Environment

Only built in groups can be used when making relocatable output

When /r command line option is used, only the built in groups can be used, i.e. no new group’s may
be defined

Operand value %d will be sign extended

Warning for 68000 MOVEQ instruction that an operand, in range 128 to 255, will be sign extended and
end up in range -1 to -128

Option /p not available when downloading to target
Options /p and /r cannot be used together

On Command line

ORG ? can only be used when downloading output
Out of memory, Linker aborting

Previous group was not OBJ’d

Cannot specify OBJ () attribute if previous group did not have obj attribute

Reference to %t ‘%n’ in expression

Use of, e.g. a section name in an expression

Reference to undefined symbol %h

There is an internal error in the object file

Relocatable output cannot be ORG’d
Remainder by zero

Run-time patch to odd address

Warning that a run-time longword patch to an odd address will occur which may cause some Amiga
systems to crash

SCSI card not present - linking aborted

Could not find SCSI card

SCSI drivers not loaded

PSYBIOS does not appear to be present

Section ‘%n’ must be in one of groups code, data or BSS

When producing Amiga format code

Section ‘%n’ placed in non-group symbol %h

There is an internal error in the object file

Section ‘%n’ placed in non-group symbol ‘%n’

An attempt was made to place a section in a non-group type symbol

Section ‘%n’ placed in two different groups

Section is placed in different groups

Section ‘%n’ placed in unknown group symbol %h

There is an internal error in the object file

A–16 Error Messages

SDevTC Development Environment

Section ‘%n’ must be in one of groups text, data or BSS

When producing ST format code

Specified patch cannot be represented in target’s relocation format

When producing relocatable code, certain run time relocations are allowed, depending on the target
output file format. This error occurs when the type of patch required cannot be represented in the
output file format, e.g. patching a byte in the ST file format which allows only longwords to be patched.

Symbol ‘%n’ multiply defined

New definition of previously defined symbol

Symbol ‘%n’ not defined

Undefined symbol

Symbol ‘%n’ placed in non-section symbol %h

There is an internal error in the object file

Symbol ‘%n’ placed in unknown section symbol %h

There is an internal error in the object file

Symbol in COFF format file has unrecognized class

COFF format files are those produced by Sierra C cross compiler, etc.

Timed out sending data to target

Target not responding or offline

Too many file names specified

Too many parameters on command line

Too many modules to link

Maximum of 256 modules may be linked

Too many symbols in COFF format file

COFF format files are those produced by Sierra C cross compiler, etc.

Unable to open output file

Could not open specified output file

Undefined symbol in COFF file patch record

COFF format files are those produced by Sierra C cross compiler, etc.

Unit number must be in range 0-127
Unknown option /%c

On Command line

Unknown processor type ‘%s’

Could not recognize target processor type

Unrecognized relocatable output format

/r option on command line

Error Messages A–17

SDevTC Development Environment

User pressed Break/Ctrl-C

Linking aborted by user

Value (%l) out of range in instruction patch

Value to be patched in is out of range

WORKSPACE command can only be used when downloading output

Psylib Error Messages

Cannot add module : it already exists

Module may only appear in a library once

Could not create object file

Error creating object file when extracting

Could not create temporary file

Error creating temporary file

Could not open/create

DOS error opening file

Error reading library file

DOS error reading file

Error writing library file

DOS error writing file, probably disk full

Incorrect format in object file

Error in object file format - rebuild it

No files matching

No object files matching the specifications were found

No library file specified
No object files specified
No option specified

An action option must be specified on the command line

Unknown option /

On Command line, option not recognized

A–18 Error Messages

SDevTC Development Environment

SDevTC Development Environment

Index

Adding A Watch, 16–32
ALIAS directives, 4–8
Anchoring a Pane, 16–42
Assembler constants, 4–4
Assembler functions, 4–5
Assembler operators, 4–6
Assembler options, 10–4
Assigning Variables, 16–30
Breakpoints, 16–36
CASE Directive, 5–33
CNOP Directive, 5–22
Configuring Your Dex Boards, 16–7
Configuring Your SCSI Card, 16–8
Continual Update Rate, 16–36
CPE File Properties, 16–13
DATA Directive, 5–18
DATASIZE Directive, 5–18
DCsize Directive, 5–15
Debugger Activity windows, 11–5
Debugger Command line syntax, 11–3
Debugger Configuration Files, 11–4
Debugger general usage, 11–7
Debugger keyboard options, 11–9
Debugger menu options, 11–12
DEF Directive, 5–29
Deleting A Watch, 16–35
DISABLE directives, 4–8
DO Directive, 5–36
Documentation, 16–9
Dsize Directive, 5–14
DSsize Directive, 5–16
Editing A Watch, 16–35
ELSE Directive, 5–32
ELSEIF Directive, 5–32
ENDC Directive, 5–32
ENDCASE Directive, 5–33
ENDIF Directive, 5–32
ENDM Directive, 6–6
ENDR Directive, 5–34
ENDW Directive, 5–35
EQU Directive, 5–4
EQUR Directive, 5–9
EQUS Directive, 5–7
Error messages

Assembler, A–3
Psylib, A–17
Psylink, A–13

Expanding Or Collapsing A Variable, 16–31
FAIL Directive, 10–9
Functions, 16–41
GLOBAL, 13–7
GLOBAL Directive, 10–11
GROUP Directive, 9–4

HEX directive, 5–17
IEEE32 Directive, 5–19
IEEE64 Directive, 5–19
IF Directive, 5–32
INCBIN Directive, 5–27
INCLUDE Directive, 5–25
INFORM Directive, 10–9
Installing The Debugger, 16–5
INSTR Function, 7–6
Labels, 16–41
Launching The Debugger, 16–9
LIST Directive, 10–8
LOCAL Directive, 8–6
Local Label Syntax and Scope, 8–3
MACRO Directive, 6–6
Macro parameters, 6–3
MACROS Directive, 6–8
MEXIT Directive, 6–6
MODEND Statement, 8–5
MODULE Statement, 8–5
NOLIST Directive, 10–8
OBJ Directive, 5–23
OBJEND Directive, 5–23
Obtaining Releases And Patches, 16–6
OFFSET Function, 9–8
On-line Help Available For The Debugger,

16–5
OPT Directive, 10–4
ORG Directive, 5–21
Pane Type, 16–23
PCclose Function, 12–12
PCinit Function, 12–7
PClseek Function, 12–9
PCopen Function, 12–8
PCread Function, 12–10
PCwrite Function, 12–11
pollhost Macro, 12–6
POPO Directive, 10–7
POPP Directive, 6–9
POPS Directive, 9–7
PSYBIOS.COM, 1–6
PSYLIB, 14–3
PSYMAKE, 15–3
PUBLIC Directive, 10–10, 13–6
PURGE Directive, 6–10
PUSHIP Directive, 6–9
PUSHO Directive, 10–7
PUSHS Directive, 9–7
RADIX Directive, 4–7
REF Directive, 5–28
Register Names, 16–41
REGS Directive, 5–37
REPT Directive, 5–34

I–2 Index

SDevTC Development Environment

Rsize Directive, 5–10
RSRESET Directive, 5–12
RSSET Directive, 5–11
RUN.EXE Download Utility, 3–6
SECT Function, 9–8
SECTION Directive, 9–6
SET directive, 5–5
SHIFT Directive, 6–7
Simple Name Completion, 16–33
Specifying Binary File Properties, 16–14
Specifying Symbol File Properties, 16–14
Step Into command, 16–38

Step Over command, 16–38
STRCMP Function, 7–5
STRLEN Function, 7–4
SUBSTR Directive, 7–7
Traversing An Index, 16–32
TYPE Function, 6–11
Typecasts and Typedefs, 16–41
UNTIL Directive, 5–36
WHILE Directive, 5–35
XDEF Directive, 10–10, 13–6
XREF Directive, 10–10, 13–6

	SDEVTC DEVELOPMENT ENVIRONMENT
	August 1998
	Changes Since Last Release
	Table of Contents
	List of Figures
	List of Tables

	About This Manual
	Changes Since Last Release
	Related Documentation
	Contents of Issue Diskette
	Developer Reference Series
	Typographic Conventions
	Developer Support

	Ch 1: PC Installation
	Overview
	Installation Check List
	Installing the PC Interface
	Installing the PC Software
	Checking Installation

	Ch 2: Using CCPSX
	Overview
	Command Line Syntax
	Environmental Variables
	Source Files
	Option Switches

	Ch 3: The ASMPSX Assembler
	Overview
	The Assembler Command Line Syntax
	Running with Brief
	Assembly and Target Errors

	Ch 4: Syntax of Assembler Statements
	Overview
	Statement Format
	Name and Label Format
	Assembler Constants
	Assembler Functions
	Assembler Operators

	Ch 5: General Assembler Directives
	Overview
	Assignment Directives
	Data Definition
	Controlling Program Execution
	Include Files
	Controlling Assembly
	Target-Related Directive

	Ch 6: Macros
	Overview
	Macro Parameters

	Ch 7: String Manipulation Functions
	Overview

	Ch 8: Local Labels
	Overview
	Local Label Syntax and Scope

	Ch 9: Structuring the Program
	Overview
	The GROUP Directive

	Ch 10: Options, Listings and Errors
	Overview
	The OPT Directive
	Assembler Options

	Ch 11: The Debugger DBUGPSX
	Overview
	Command Line Syntax
	Configuration Files
	Activity Windows
	General Debugger Usage
	Keyboard Options

	Ch 12: The Debug Stub Functions
	Overview
	Assembly Language Facilities
	The ‚C™ Library Functions

	Ch 13: The PSYLINK Linker
	Overview
	Command Line Syntax
	Linker Command Files

	Ch 14: The Librarian
	Overview
	PSYLIB Command Line Syntax

	Ch 15: The PSYMAKE Utility
	Overview
	PSYMAKE Command Line Syntax
	Format of the Makefile

	Ch 16: SDevTC Debugger for Windows 95
	Overview
	Projects
	Views
	Color Schemes
	Files
	Dynamic Update
	Chapter Contents
	On-line Help Available For The Debugger
	Installing The Debugger
	Launching The Debugger
	The SDevTC File Server
	Connecting The Target and Unit
	SDevTC Project Management
	SDevTC Debugger Productivity Features
	SDevTC Views
	Working With Panes
	Debugging Your Program
	Closing The Debugger

	App A: Error Messages
	Overview
	Error Message Format
	Assembler Error Messages
	Psylink Error Messages
	Psylib Error Messages

	Index

