
LibPSn00b Library Reference

(ɔ) 2019 PSn00bSDK Project / Meido-Tek Computer Entertainment Philippines

Published date: < to be filled >

Meido-Tek Computer Entertainment Philippines
Non existent address
Non existent city, FU, 6669
Philippines

The LibPSn00b Library Reference manual is supplied without any warranty and is subject to the terms of The
Mozilla Public License. Distribution of this documented and associated libraries are permitted as long as the
original license remains unchanged. Any additions you’ve made to LibPSn00b of PSn00bSDK must be
documented here and in the changelog.

- This particular page is intended to be a spoof of the official library documents -

Table of Contents
About this Document

About LibPSn00b and the PSn00bSDK project 1
Typographic Conventions 1
Original Code 1
Credits & Acknowledgments 2

Chapter 1: Graphics Library
Overview 4
Structures 10
Functions 13

1 About this Document

About this Document

About LibPSn00b and the PSn00bSDK project

LibPSn00b is a free and open source implementation of Sony’s Runtime Libraries used for developing
software for the original PlayStation that also tries to be more efficient than Sony’s original libraries with
the goal of making the library functions written mostly in MIPS assembly.

LibPSn00b follows most of the original syntax of Sony’s libraries for familiarity reasons and to make it
easier to port existing homebrew originally written for Sony’s SDK over to LibPSn00b with minimal effort,
provided the functions and other things it depends on have already been implemented. LibPSn00b is
obviously part of the PSn00bSDK project.

The PSn00bSDK project aims to develop a 100% free and open source SDK for the original PlayStation
that is as capable as Sony’s official SDK in terms of hardware features to open up the possibility of
developing homebrew titles that are on par of officially released titles 100% legally.

The PSn00bSDK Project is in no affiliation with Sony Computer Entertainment Inc.

Typographic Conventions

Certain typographic conventions are used throughout this document to clarify the meaning of the
text. The following conventions apply in this document:

Convention Meaning

italic Function arguments and structure members.

monospace Program code. Usually contained inside of a code
block.

bold Types, structure and function names.

blue Hyperlink.

Original Code
Functions, structures and macro definitions that are originally not part of the official libraries fall
under Original Code and must be indicated as such in both this document and the library
headers.

For contributors; original code should never use existing names of the official libraries to avoid
compatibility issues when porting existing homebrew originally written for Sony’s SDKs.

INCONSEQUENTIAL LibPSn00b Library Reference

About this Document 2

Credits & Acknowledgments

Library Developers:
Lameguy64

Library Documentation:
Lameguy64

Reference Materials:
Nocash’s PlayStation specs document: http://problemkaputt.de/psx-spx.htm

tails92’s PSXSDK library source: https://github.com/simias/psxsdk

LibPSn00b Library Reference INCONSEQUENTIAL

https://github.com/simias/psxsdk
http://problemkaputt.de/psx-spx.htm

3 Chapter 1: Graphics Library

Chapter 1: Graphics Library

Table of Contents
Chapter 1: Graphics Library

Overview
Display and Drawing Environments 5
Video Memory 5
Textures & Color Lookup Tables (CLUT) 6
Ordering Tables 6
Double Buffering 8

Structures
DISPENV 10
DRAWENV 11
RECT 12
TIM_IMAGE 13

Functions
ClearOTagR 14
DrawOTag 15
DrawSync 16
GetTimInfo 17
LoadImage 18
ResetGraph 19
VSync 20
VSyncCallback 21

Macros
addPrim 22
setVector 23

INCONSEQUENTIAL LibPSn00b Library Reference

Chapter 1: Graphics Library 4

Overview

The psxgpu library provides functions, structures and macros to initialize, configure and draw
graphic primitives using the PlayStation’s GPU. It is an essential component to any PlayStation
project unless its something that does not show anything on the display but such a project
would be pretty ridiculous.

This library does not provide functions for 3D processing, only display and graphics primitives.
3D functions are provided in psxgte instead.

LibPSn00b Library Reference INCONSEQUENTIAL

5 Chapter 1: Graphics Library

Display and Drawing Environments
The display environment refers to the video mode and display area of the frame buffer to be
displayed on the television screen that is set to the GPU. These parameters are usually defined
using DISPENV and applied to the GPU using PutDispEnv(). The video standard used can be
changed using SetVideoMode().

The drawing environment refers to the area of the frame buffer where drawing takes place and
the base texture page and texture window coordinates. These parameters are typically defined
using DRAWENV and applied to the GPU using PutDrawEnv(). Parameters such as current
texture page and drawing area can be altered mid-drawing using appropriate primitives such as
DR_TPAGE and DR_AREA.

While the GPU is capable of displaying 24-bit color it can only draw graphics in 16-bit color
limiting the usefulness of 24-bit color mode to static images and FMV video sequences.

Video Memory
The PlayStation has 1 megabyte of video memory used for frame buffers, textures and color
look-up tables (CLUTs). The video memory is not connected to the memory bus so the only
way to transfer data to and from it is through the GPU using LoadImage() and StoreImage()
respectively.

The GPU addresses the video memory as a 1024x512 16-bit frame buffer so display, draw and
image areas are specified in 2D coordinates. The frame buffer is divided into 64x256 pixel
pages but this is most relevant on textures.

Sample layout of display buffers, textures and Clutch in VRAM

INCONSEQUENTIAL LibPSn00b Library Reference

Texture

Texture

Texture

CLUTs

Display/Draw
Areas

(0,0)

(1023, 511)

Chapter 1: Graphics Library 6

Textures & Color Lookup Tables (CLUT)
Textures are bitmap images to be used with sprites and textured polygons. The GPU supports
16-bit texture images as well as color indexed 8-bit and 4-bit textures. Since the VRAM is
always treated as a 16-bit 1024x512 frame buffer regardless of the color depth f the texture 8-
bit and 4-bit textures will appear at half width and quarter width respectively. (eg. 64x64 texture
will be 32x64 in 8-bit and 16x64 in 4-bit)

While the size of the texture does not necessarily have to be in powers of two the width must
be at least a multiple of 2 for 16-bit and 8-bit textures and 4 for 4-bit textures to ensure
consistent texturing without any graphical corruption around the edges of a sprite or textured
polygon.

The pixel format of 16-bit textures, CLUTs and the pixels the GPU draws is RGB555 which can
support up to 32,768 unique colors. The 16th bit is used as a semi-transparency mask bit for
textures and as a write protection mask to the GPU which can be used as a basic 1-bit stencil
mask.

The GPU has a 2KB texture cache which can be taken advantage of by having textures of a
specific size which varies depending on the color depth of the texture. For 4-bit textures it is
64x64, for 8-bit textures it is 32x64 and for 16-bit textures it is 32x32. Taking advantage of the
texture cache can help improve drawing performance.

The maximum texture resolution sprite and polygon primitives can support is 256x256 on all
texture color depths. Larger textures can be drawn with multiple primitives that draws each
portion of the texture image.

Color indexed texture formats have the addition of a color lookup table or CLUT which is
essentially the color palette of color indexed textures. It appears on the VRAM as a 16-bit
256x1 or 16x1 texture and is positioned on the VRAM much like a texture image.

Ordering Tables
An ordering table is an array of 32-bit integers defined with pointers that point from one element
to another forming a chain of pointers. The chain must end with a terminator value of
0x00FFFFFF but ClearOTagR() sets that automatically.

A reverse ordering table chain

A reverse ordering table which is defined using the ClearOTagR() function begins at the last
element of the array and ends at the first element. This style of ordering table is most commonly
used for 3D graphics as it allows for simplified depth sorting of polygons as primitives sorted to
higher elements are drawn first and lower elements are drawn last. This is unofficially known as

LibPSn00b Library Reference INCONSEQUENTIAL

OT Entry 0 (Term)

OT Entry 4

OT Entry 5

OT Entry 6

OT Entry 1

OT Entry 2

OT Entry 3

7 Chapter 1: Graphics Library

blit sort but there doesn’t seem to be much information about this sorting algorithm so the exact
term is unknown. The table can also be used to control layering of sprite and tile elements in 2D
games.

Primitives to be drawn are usually ‘sorted’ into an element of an ordering table by linking the
primitive to the chain using AddPrim(). This pretty much explains why many graphics functions
that draw graphics primitives or objects often reference sorting rather than drawing.

The primitives themselves are usually stored in a separate buffer, usually an array of char
elements. Preferably one should additionally define a pointer variable that initially points to the
beginning of a primitive buffer and is incremented based on the size of a primitive that had been
sorted to use as a reference as to where the next primitive should be stored to and is reset to
the start of a buffer on every frame. Unlike the ordering table it does not need to be cleared on
every frame.

Ordering table chain with primitive sorted (0)

Multiple primitives may be sorted to a single ordering table element and does not overwrite any
previously sorted primitives in the element. There’s a common misconception where you can
only sort a single primitive on each element and the number of primitives you can sort is limited
by the size of your ordering table. Both of these are entirely false as the ordering table
mechanism chains previously sorted primitives together and can sort as many primitives to a
single element as you’d like.

Remember that primitives sorted first are always processed last as shown in the figure below.

Multiple primitives sorted to the same table entry (0)

INCONSEQUENTIAL LibPSn00b Library Reference

OT Entry 0 (Term)

OT Entry 4

OT Entry 5

OT Entry 6

OT Entry 1

OT Entry 2

OT Entry 3

Primitive 1

Primitive 2

Primitive 3

Primitive 4

OT Entry 0 (Term)

OT Entry 4

OT Entry 5

OT Entry 6

OT Entry 1

OT Entry 2

OT Entry 3

Primitive

Chapter 1: Graphics Library 8

Double Buffering
Ideally you’d want to set up your display/drawing areas, ordering tables and primitive buffers in a
doubled buffered configuration to achieve seamless animations and better graphics
performance.

For the display/draw areas you must reserve two areas of the frame buffer, one for displaying
and one for drawing to prevent flicker in the event of a slowdown. This can easily be achieved
witha pair of DISPENV and DRAWENV definitions with one pointing to an area to be displayed
and the other pointing to an area to be drawn. Either definitions must not overlap each other’s
areas.

This scheme is only applicable to 240 or 256 line video modes as there’s not enough space to
contain two high resolution display/draw areas in the frame buffer. In interlaced high resolution
modes however, graphics are only drawn to lines that are not yet shown on the display to hide
flickering issues in a single buffered display/draw configuration but a consistent 60 FPS for
NTSC and 50 FPS for PAL must be achieved to avoid any flicker (well, apart from the flicker of
interlacing).

For the ordering tables and packet buffers you must define two pairs of each buffer. This is so
that while the GPU is busy processing an ordering table full of primitives the time it takes to wait
for the GPU to finish processing can be used to process the next frame but the ordering table
the GPU is currently processing cannot be touched while the GPU is busy processing it.

The following page describes a code example is a typical implementation of double buffered
display/draw areas, ordering tables and packet buffers.

LibPSn00b Library Reference INCONSEQUENTIAL

9 Chapter 1: Graphics Library

#define OTLEN 128 // Length of ordering table

DISPENV disp[2]; // Display environments
DRAWENV draw[2]; // Draw environments

int ot[2][OTLEN]; // Ordering tables
char pribuff[2][32768] // Primitive buffers
char *nextpri; // Pointer for next primitive
int db=0; // Double buffer index

void init() {

// Define the display/drawing environments
SetDefDispEnv(&disp[0], 0, 0, 320, 240);
SetDefDrawEnv(&draw[0], 0, 240, 320, 240);

SetDefDispEnv(&disp[1], 0, 240, 320, 240);
SetDefDrawEnv(&draw[1], 0, 0, 320, 240);

// Clear the ordering tables
ClearOTagR(ot[0], OTLEN);
ClearOTagR(ot[1], OTLEN);
nextpri = pribuff[0];

}

int main() {

init();

while(1) {

/* sort primitives */

DrawSync(); // Wait for GPU and vertical retrace
VSync();

PutDispEnv(&disp[db]); // Apply display/draw environments
PutDrawEnv(&draw[db]);

SetDispMask(1); // Enable display

DrawOTag(ot[db]+OTLEN-1); // Draw ordering table

db = !db; // Alternate buffers

ClearOTagR(ot[db], OTLEN); // Clear next ordering table
nextpri = pribuff[db]; // Reset primitive address

}

return 0;

}

Framebuffer double buffering sample cod

INCONSEQUENTIAL LibPSn00b Library Reference

Chapter 1: Graphics Library 10

Structures

DISPENV
Display environment

Library Header File Original Code Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.1b 12/22/2018

Structure

typedef struct {
RECT disp; Frame buffer area to display and display resolution.
RECT screen; Picture display position and size on the display.
unsigned char isinter; Interlace flag. 0: no interlace (progressive); 1: interlace
unsigned char isrgb24; 24-bit color mode flag. 0: 16-bit mode; 1: 24-bit color mode
unsigned char reverse; ‘Reverse mode’ flag (sets bit 7 to video mode parameters).

Doesn’t do much when non-zero (varies on GPU version?).
unsigned char pad; Padding.

} DISPENV;

Explanation

Specifies display parameters and video mode as well as the area of the frame buffer to display
on the screen.

disp specifies both the frame buffer coordinates to display and the display resolution. Valid
horizontal resolutions are 256, 320, 384, 512 or 640 while vertical resolutions are 240 or 480 for
NTSC and 256 or 512 for PAL. Sizes that are not valid are snapped to a valid size.

screen specifies the position and size of the display on the TV screen. screen.x and screen.y
control the X and Y position of the picture while screen.w and screen.h control the size of the
picture. If either screen.w or screen.h are set to zero a default image size is used. Changing the
picture size does not resize the image shown on the screen but rather controls how much pixels
are shown on the screen and may be used to set non standard display resolutions.

If you intend to use a PAL video mode that is 256 or 512 lines tall you need to manually set
screen.h to 272 so all 256 lines will be displayed and set screen.y to 10 to center the picture
vertically.

Work in progress

screen may behave differently compared to the implementation in the official SDK.

See also

LibPSn00b Library Reference INCONSEQUENTIAL

11 Chapter 1: Graphics Library

DRAWENV
Drawing environment

Library Header File Original Code Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.1b 12/21/2018

Structure

typedef struct {
RECT clip; Drawing area. Must be within (0, 0) – (1023, 511).
short ofs[2]; Drawing offset. ofs[0] and ofs[1] are X and Y respectively.
RECT tw; Texture window. Species offset and size where texture

wrapping starts (can be set mid-drawing using DR_TPAGE).
unsigned short tpage; Initial texture page value (can be set mid-drawing using

DR_TPAGE).
unsigned char dtd; Dithering enable. 0: off; 1: on

(Simply merges an appropriate bit to tpage)
unsigned char dfe; Drawing on displayed area enable.

0: No drawing on displayed area (required in interlaced mode).
1: Draw on currently displayed area.
(Simply merges an appropriate bit to tpage)

unsigned char r0,g0,b0; Drawing area clear color.
DR_ENV dr_env; Packet buffer used by PutDrawEnv() when applying the

drawing environment.
} DRAWENV;

Explanation

Used to specify various GPU drawing parameters such as draw area, GPU offset, initial texture
window, initial texture page and more.

Work in progress

tw has no effect to the drawing environment.

See also

INCONSEQUENTIAL LibPSn00b Library Reference

Chapter 1: Graphics Library 12

RECT
Defines a rectangular area

Library Header File Original Code Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.1b 12/21/2018

Structure

typedef struct {
short x,y; Top left coordinates of the rectangular area.
short w,h; Width and height of the rectangular area.

} RECT;

Explanation

Used by many functions and structures to define a rectangular area. Coordinates may not
exceed (0, 0) – (1024, 512) unless you want to corrupt the frame buffer.

See also

LibPSn00b Library Reference INCONSEQUENTIAL

13 Chapter 1: Graphics Library

SPRT
Any-size textured sprite primitive

Library Header File Original Code Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.1b 05/23/2019

Structure

typedef struct {
unsigned int tag; Pointer tag to next primitive packet.
unsigned char r0,g0,b0;code; RGB color of sprite + packet code.
short x0,y0; Position of sprite.
unsigned char u0,v0; Sprite texture coordinates within texture page. u0 must

be a multiple of 2.
unsigned short clut; Sprite texture CLUT ID.
unsigned short w,h; Sprite size (w must be a multiple of 2).

} SPRT;

Explanation

Draws a textured sprite primitive of any defined size. Faster than POLY_FT4.

If you use a sprite size greater than 256x256 the texture will repeat. Size can be up to 1023 x
511 pixels.

Because the SPRT primitive has no tpage parameter so a DR_TPAGE primitive must be sorted
to the ordering table after the SPRT primitive to set desired tpage value for the sprite primitive.

INCONSEQUENTIAL LibPSn00b Library Reference

Chapter 1: Graphics Library 14

SPRT_8, SPRT_16
Fixed size 8 x 8 or 16 x 16 textured sprite.

Library Header Original Code Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.1b 05/23/2019

Structure

typedef struct {
unsigned int tag; Pointer tag to next primitive packet.
unsigned char r0,g0,b0,code; RGB color of sprite + primitive code.
short x0,y0; Position of sprite (top-left coordinates).
unsigned char u0,v0; Sprite texture coordinates within texture page. u0 must

be a multiple of 2.
unsigned short clut; Sprite texture CLUT ID.

} SPRT_8;

typedef struct {
unsigned int tag; Pointer tag to next primitive packet.
unsigned char r0,g0,b0,code; RGB color of sprite + primitive code.
short x0,y0; Position of sprite (top-left coordinates)
unsigned char u0,v0; Sprite texture coordinates within texture page. u0 must

be a multiple of 2.
unsigned short clut; Sprite texture CLUT ID.

} SPRT_16;

Explanation

Draws a fixed size 8 x 8 or 16 x 16 pixel textured sprite. Supposedly faster than SPRT.

Much like SPRT it has no tpage parameter so a DR_TPAGE primitive must be sorted to the
ordering table after the SPRT primitive to set desired tpage value for the sprite primitive.

LibPSn00b Library Reference INCONSEQUENTIAL

15 Chapter 1: Graphics Library

TIM_IMAGE
Texture Image file parameters

Library Header File Original Code Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.1b 02/02/2019

Structure

typedef struct {
unsigned int mode; Image mode (bit 0-3: color depth, bit 4: CLUT flag).
RECT *crect; Pointer to CLUT rectangle coordinates.
unsigned int *caddr; Pointer to CLUT data (or NULL if no CLUT).
RECT *prect; Pointer to pixel data rectangle coordinates.
unsigned int *paddr; Pointer to pixel data.

} TIM_IMAGE;

Explanation

Defines the pointers to VRAM coordinates and pixel data of a TIM image file. Values are to be
set by GetTimInfo().

The pointers point directly to relevant parts of the TIM image file.

See also

INCONSEQUENTIAL LibPSn00b Library Reference

Chapter 1: Graphics Library 16

TILE
Any size flat colored sprite primitive

Library Header File Original Code Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.1b 05/23/2019

Structure

typedef struct {
unsigned int tag; Pointer tag to next primitive packet.
unsigned char r0,g0,b0,code; RGB color of tile + packet code
short x0,y0; Position of tile (top-left coordinate)
short w,h; Size of tile in pixels.

} TILE;

Explanation

Draws a flat colored sprite of specified size.

LibPSn00b Library Reference INCONSEQUENTIAL

17 Chapter 1: Graphics Library

TILE_1, TILE_8, TILE_16
Fixed size 1 x 1, 8 x 8 and 16 x 16 colored sprites.

Library Header File Original Code Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.1b 05/23/2019

Structure

typedef struct {
unsigned int tag; Pointer tag to next primitive packet.
unsigned char r0,g0,b0,code; RGB color of tile + packet code.
short x0,y0; Position of tile (top-left coordinates).

} TILE_1;

typedef struct {
unsigned int tag; Pointer tag to next primitive packet.
unsigned char r0,g0,b0,code; RGB color of tile + packet code.
short x0,y0; Position of tile (top-left coordinates)

} TILE_8;

typedef struct {
unsigned int tag; Pointer tag to next primitive packet.
unsigned char r0,g0,b0,code; RGB color of tile + packet code.
short x0,y0; Position of tile (top-left coordinates)

} TILE_16;

Explanation

Draws a fixed size 1 x 1, 8 x 8 or 16 x 16 flat colored sprite.

INCONSEQUENTIAL LibPSn00b Library Reference

Chapter 1: Graphics Library 18

Functions

ClearOTagR
Initializes an array to an empty ordering table (reverse order)

Library Header File Original Code Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.1b 12/21/2018

Syntax

void ClearOTagR(
unsigned int *ot, Pointer to an array to initialize into a linked list.
int n) Number of array elements.

Explanation

Initializes an array specified by *ot to a linked list to use as an ordering table. An ordering table
consists of an array of pointers that point from one entry to the next which primitives may be
registered to.

This function uses DMA to clear the ordering table. It prepares a reverse order list which starts
at the last entry of the array and ends at the first. This is ideal for 3D graphics as higher table
entries are drawn first and lower entries are drawn last. Primitives registered to the same entry
first are always drawn last.

To execute and array initialized by ClearOTag(), execute DrawOTag(ot+n-1) (draw from last
entry of array) since the ordering table is in reverse order.

See Also

LibPSn00b Library Reference INCONSEQUENTIAL

19 Chapter 1: Graphics Library

DrawOTag
Executes an ordering table

Library Header File Original Code Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.1b 12/21/2018

Syntax

void DrawOTag(
unsigned int *ot) Pointer to an ordering table to execute.

Explanation

Executes primitives linked into an ordering table array specified by *ot.

When executing an ordering table initialized by ClearOTagR(), you must specify the last entry in
the array.

DrawOTag() uses DMA to query primitives to the GPU and may be non-blocking during DMA
page gaps. Use DrawSync() to ensure execution of the ordering table has completed.

See also

INCONSEQUENTIAL LibPSn00b Library Reference

Chapter 1: Graphics Library 20

DrawSync
Waits until all GPU drawing or transfers have completed

Library Header File Original Code Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.1b 12/21/2018

Syntax

void DrawSync()

Explanation

Waits until the GPU has finished processing drawing commands or VRAM transfers.

Work in progress

This function currently does not take an argument nor return the number of primitives left as it
would in the official SDK. There’s no timeout when the GPU freezes when it runs into a bad
primitive.

LibPSn00b Library Reference INCONSEQUENTIAL

21 Chapter 1: Graphics Library

GetTimInfo
Get image information of a TIM image file

Library Header File Original Code Introduced Documentation Date

libpsxgpu.a psxgpu.h Yes 0.1b 02/02/2019

Syntax

int GetTimInfo(
unsigned int *tim, Pointer to a TIM image file.
TIM_IMAGE *timimg); Pointer to a TIM_IMAGE structure.

Explanation

Sets the members of the specified TIM_IMAGE structure to the relevant image parameters
inside a TIM image file specified by *tim.

Return value

0: success, 1: invalid file ID, 2: unsupported TIM version

INCONSEQUENTIAL LibPSn00b Library Reference

Chapter 1: Graphics Library 22

GetVideoMode
Gets the current video standard mode

Library Header File Original Code Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.1b 2/2/2019

Syntax

int GetVideoMode()

Explanation

Returns the current video standard mode.

Differences

Unlike the official libraries, this function returns the video mode standard currently set (ie. If this
function is called on a PAL machine while in a PAL display mode, it returns 1).

Returns

MODE_NTSC: NTSC, MODE_PAL: PAL

See also

LibPSn00b Library Reference INCONSEQUENTIAL

23 Chapter 1: Graphics Library

LoadImage
Upload image data to VRAM.

Library Header File Original Code Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.1b 12/21/2018

Syntax

void LoadImage(
RECT *rect, Pointer to a RECT specifying VRAM destination coordinates.
int n) Pointer to source image data.

Explanation

Uploads image data from the source address *data to VRAM. The image size and destination
offset in VRAM is specified by *rect using a RECT object.

LoadImage() uses DMA to upload data to VRAM at high speed and may be non-blocking. Use
DrawSync() to ensure DMA transfer has completed. Using DrawSync() when uploading multiple
images at once is not necessary as LoadImage() will wait for a previous transfer to complete.

If you want to upload a texture image on every frame in a real time sequence it is best to
perform the upload after DrawSync() and Vsync().

See also

INCONSEQUENTIAL LibPSn00b Library Reference

Chapter 1: Graphics Library 24

ResetGraph
Resets the graphics subsystem.

Library Header File Original Code Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.1b 12/28/2018

Syntax

void ResetGraph(
int mode) Reset mode.

Explanation

Resets the GPU and interrupt subsystem according to mode.

When this function is first called it calls BIOS functions SetDefaultExitFromException(),
ChangeClearPad(), ChangeClearRCnt() and _96_remove() and installs its own event handler
for RCntCNT3 used for VSync.

Mode Operation

0 Resets the GPU completely including the video mode and
turns off the display.

1 Cancels any DMA transfer and resets the command buffer.
3 Resets the command buffer.

Work in progress

There’s currently no way of removing the event installed by ResetGraph() which may be
necessary for loaders. The way the VSync interrupt handler is installed is also not the same as
the one in the official library (ResetGraph() in official libraries does not install an event handler).

LibPSn00b Library Reference INCONSEQUENTIAL

25 Chapter 1: Graphics Library

SetVideoMode
Sets the video standard mode

Library Header File Original Code Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.1b 2/2/2019

Syntax

void SetVideoMode(
int mode) Video standard mode to set.

Explanation

Sets the video signaling standard by mode (MODE_NTSC for NTSC or MODE_PAL for PAL).

INCONSEQUENTIAL LibPSn00b Library Reference

Chapter 1: Graphics Library 26

VSync
Waits for vertical retrace.

Library Header File Original Code Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.1b 12/21/2018

Syntax

void VSync()

Explanation

Waits until a vertical retrace occurs. In an interlaced video mode it additionally waits if the GPU
is currently displaying odd or even rows of the frame buffer which alternates on every call of
Vsync.

If a callback function is set, the callback function is executed first before this function completes.

Work in progress notes

This function currently does not take an argument for retrieving VSync counter values and
waiting until a number of VSyncs have passed as it would on the official SDK.

See also

VSyncCallback()

LibPSn00b Library Reference INCONSEQUENTIAL

27 Chapter 1: Graphics Library

VSyncCallback
Sets a specified function to be executed on every vertical blanking period.

Library Header Original Code Introduced Documentation Date

liblibpsxgpu.a psxgpu.h No 0.1b 2/2/2019

Syntax

void VsyncCallback(
void (*func)()); Pointer to a callback function

Explanation

Sets a callback function specified by *func to be executed on every vertical blanking period.
Setting 0 will disable a previously specified callback function.

Because the callback function is executed during a critical section on every vertical blank, it is
necessary to finish any processing quickly. Or an interrupt deadlock will occur (exception
handler finishes but a vblank has passed so the system enters exception handling again).

It is recommended to define any variable manipulated by a callback function as volatile to make
sure that any code reading the variable outside the callback handler will always read the
variable for changes.

See also

VSync()

INCONSEQUENTIAL LibPSn00b Library Reference

Chapter 1: Graphics Library 28

Macros

addPrim
Register a primitive to an ordering table

Library Header File Original Code Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.1b 2/2/2019

Syntax

addPrim(
ot, Pointer to an ordering table element.
pri); Pointer to a primitive to register.

Explanation

Registers a primitive specified by pri to an ordering table or another primitive specified by ot.
The pointers of both the specified ordering table element and primitive are manipulated in such
a way that the primitive is linked to the ordering table chain.

There’s a common misconception where you can only sort one primitive per ordering table
element at a time otherwise it would corrupt the ordering table. This is not the case in reality as
adding a primitive to an ordering table element that has a primitive already registered to it will
get append to the chain. This can be done safely any number of times.

This misconception probably came from a misunderstanding of this statement in the official
library documents:

“A primitive may be added to a primitive list only once in the same frame. Attempting to add it
multiple times in the same frame results in a corrupted list.”

It likely meant that a primitive that had already been added to an ordering table can’t be added
to the ordering table again, only new primitives that have not been previously registered can be
safely added.

LibPSn00b Library Reference INCONSEQUENTIAL

29 Chapter 1: Graphics Library

setVector
Set elements of a vector

Library Header File Original Code Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.1b 2/2/2019

Syntax

setVector(
*p, Pointer to a vector.
x, y, z); Coordinate values.

Explanation

Sets the (x, y, z) elements of a VECTOR or SVECTOR structure defined in psxgte.h.

INCONSEQUENTIAL LibPSn00b Library Reference

