
LibPSn00b Library Reference
Runtime Library v0.15b

PSn00bSDK
2018 - 2020 Meido-Tek Productions / PSn00bSDK Project

The PSn00bSDK tools and library programs fall under the terms of the Mozilla Public License. This
copy of PSn00bSDK must include a copy of the Mozilla Public License, if not you must obtain a copy
of this SDK with the license file intact.

As a quick summary of the Mozilla Public License; projects using MPL don’t necessarily have to be
under the MPL license and source disclosure is not required, only assets that are part of PSn00bSDK
must be under MPL. If any derivative modifications have been made to PSn00bSDK that improves its
functionality, such changes must be committed upstream to the main repository of PSn00bSDK under
the terms of the MPL. It is also the only way to ‘donate’ to the project as the PSn00bSDK project does
not accept any monetary donations.

For more details on the Mozilla Public License, you can read the full license at:
https://www.mozilla.org/en-US/MPL/2.0/

PSn00bSDK is 100% free to use for both hobbyist and commercial homebrew projects. Third party
distribution of PSn00bSDK is probably not advisable as libraries and tools update regularly in its
current state.

PSn00bSDK Github repository:
https://github.com/Lameguy64/PSn00bSDK

https://www.mozilla.org/en-US/MPL/2.0/
https://github.com/Lameguy64/PSn00bSDK

Table of Contents
About This Manual 1

Changes Since Last Version 1
Related Documentation 2
Documentation Credits 2

CD-ROM Library 3
Structures 4
Functions 9
Macros 33

Graphics Library 35
Overview 37
Structures 38
Structures (Primitives) 43
Functions 57
Macros 79

Miscellaneous Library 112
Overview 113
Functions 114

Serial Input/Output Library 118
Overview 119
Functions 120

About This Manual 1

About This Manual
The purpose of this manual is to describe all available LibPSn00b library functions, macros and structures
that have been implement so far throughout the development of this project.

There are some plans to make a LibPSn00b Library Overview companion volume that further describes the
structure, use and purpose of the libraries of LibPSn00b but is not yet being worked on due to limited
available man power of the PSn00bSDK project as of the writing of this document.

Changes Since Last Version

CD-ROM Library:

• Majority of library documented.

Other:

• Numerous typographical errors corrected which were mistakenly not logged.

LibPSn00b Library Reference LACKING CONFIDENCE

2 About This Manual

Related Documentation
Since an overview volume of the LibPSn00b Runtime Library is not yet made, the Lameguy’s PSX
Programming Tutorial Series is the best available substitute document for beginners alike for now. This can
be found on the Tools & Resources page of the Lameguy64 website at http://lameguy64.net/index.php?
page=tools.

The tutorial series covers both the Programmer’s Tool/PsyQ SDK and PSn00bSDK and is also essential
learning materials to those new to programming for the PSX.

Note: The Lameguy64 website additionally posts updates and current developments regarding PSn00bSDK
and the LibPSn00b Runtime Libraries on occasion.

Nocash’s PSX specs document may also be of great use, especially if you plan to go low level:
http://problemkaputt.de/psx-spx.htm

Documentation Credits
Lead writer: Lameguy64

LACKING CONFIDENCE LibPSn00b Library Reference

http://problemkaputt.de/psx-spx.htm
http://lameguy64.tk/index.php?page=tools
http://lameguy64.tk/index.php?page=tools

CD-ROM Library 3

CD-ROM Library

Table of Contents
CD-ROM Library 3

Structures 4
CdlATV 4
CdlDIR 5
CdlFILE 6
CdlFILTER 7
CdlLOC 8

Functions 9
CdAutoPauseCallback 9
CdCloseDir 10
CdControl 11
CdControlB 13
CdControlF 14
CdGetToc 15
CdGetSector 16
CdMode 17
CdMix 18
CdStatus 19
CdPosToInt 20
CdIntToPos 21
CdInit 22
CdIsoError 23
CdOpenDir 24
CdRead 25
CdReadCallback 26
CdReadDir 27
CdReadSync 28
CdReadyCallback 29
CdSearchFile 30
CdSync 31
CdSyncCallback 32

Macros 33
btoi 33
itob 34

LibPSn00b Library Reference LACKING CONFIDENCE

4 CD-ROM Library

Structures

CdlATV
CD-ROM attenuation parameters

Library Header File Original Introduced Documentation Date

libpsxcd.a psxcd.h No 0.15b 12/18/2019

Structure

typedef struct CdlATV
{

u_char val0; CD to SPU L-to-L volume
u_char val1; CD to SPU L-to-R volume
u_char val2; CD to SPU R-to-R volume
u_char val3; CD to SPU R-to-L volume

} CdlATV;

Explanation

This structure specifies parameters for the CD-ROM attenuation. Values must be of range 0 to 127.

The CD-ROM attenuation can be used to set the CD-ROM audio output to mono (0x40, 0x40, 0x40, 0x40) or
reversed stereo (0x00, 0x80, 0x00, 0x80). It can also be used to play one of two stereo channels to both
speakers.

The CD-ROM attenuation affects CD-DA and CD-XA audio.

See also

CdMix

LACKING CONFIDENCE LibPSn00b Library Reference

CD-ROM Library 5

CdlDIR
CD-ROM directory query context handle

Library Header File Original Introduced Documentation Date

libpsxcd.a psxcd.h Yes 0.15b 02/28/2020

Structure

typedef void* CdlDIR;

Explanation

Used to store a directory context created by CdOpenDir(). An open context can then be used with
CdReadDir() and closed with CdCloseDir().

LibPSn00b Library Reference LACKING CONFIDENCE

6 CD-ROM Library

CdlFILE
File entry structure

Library Header File Original Introduced Documentation Date

libpsxcd.a psxcd.h No 0.15b 12/18/2019

Structure

typedef struct CdlFILE
{

CdlLOC loc; CD-ROM position coordinates of file
u_int size; Size of file in bytes
char name[16]; File name

} CdlFILE;

Explanation

Used to store basic information of a file such as logical block location and size. Currently, CdSearchFile() is
the only function that uses this struct but it will be used in directory listing functions that may be implemented
in the future.

See also

CdSearchFile

LACKING CONFIDENCE LibPSn00b Library Reference

CD-ROM Library 7

CdlFILTER
Structure used to set CD-ROM XA filter

Library Header File Original Introduced Documentation Date

libpsxcd.a psxcd.h No 0.15b 12/19/2019

Structure

typedef struct CdlFILTER
{

u_char file; File number to fetch (usually 1)
u_char chan; Channel number (0 through 7)
u_short pad; Padding

} CdlFILTER;

Explanation

This structure is used to specify stream filter parameters for CD-ROM XA audio streaming using the
CdlSetfilter command. This only affects CD-ROM XA audio streaming.

CD-ROM XA audio is normally comprised of up to 8 or more ADPCM compressed audio streams interleaved
into one continuous stream of data. The data stream is normally read at 2x speed but only one of eight XA
audio streams can be played at a time. The XA stream to play is specified by the CdlSetfilter command and
this struct.

The CD-ROM XA filter can be changed during CD-ROM XA audio playback with zero audio interruption. This
can be used to achieve dynamic music effects by switching to alternate versions of a theme to fit specific
scenes seamlessly.

See also

CdControl

LibPSn00b Library Reference LACKING CONFIDENCE

8 CD-ROM Library

CdlLOC
CD-ROM positional coordinates

Library Header File Original Introduced Documentation Date

libpsxcd.a psxcd.h No 0.15b 12/18/2019

Structure

typedef struct CdlLOC
{

u_char minute; Minutes (BCD)
u_char second; Seconds (BCD)
u_char sector; Sector or frame (BCD)
u_char track; Track number (not used)

} CdlLOC;

Explanation

This structure is used to specify CD-ROM positional coordinates for CdlSetloc, CdlReadN and CdlReadS
CD-ROM commands. Use CdIntToPos() to set parameters from a logical sector number.

See also

CdIntToPos CdControl

LACKING CONFIDENCE LibPSn00b Library Reference

CD-ROM Library 9

Functions

CdAutoPauseCallback
Sets a callback function for auto pause

Library Header File Original Introduced Documentation Date

libpsxcd psxcd.h Yes 0.15b 12/18/2019

Syntax

long *CdAutoPauseCallback(
void(*func)()) Callback function

Explanation

Sets a callback function specified by *func. Specifying 0 disables the callback.

The callback is executed when an auto pause interrupt occurs enabled by CdlModeAP. Auto pause occurs
when CD Audio playback reaches the end of the audio track.

This can be used to easily loop CD audio automatically without any intervention in your software loop.

Returns

Pointer to the last callback function set.

LibPSn00b Library Reference LACKING CONFIDENCE

10 CD-ROM Library

CdCloseDir
Closes a directory context created by CdOpenDir().

Library Header File Original Introduced Documentation Date

libpsxcd psxcd.h Yes 0.15b 02/28/2020

Syntax

void CdCloseDir(
CdlDIR *dir) Directory context

Explanation

Closes an open directory context.

Behavior is undefined when closing an already closed directory context and may result in a crash.

See also

CdOpenDir

LACKING CONFIDENCE LibPSn00b Library Reference

CD-ROM Library 11

CdControl
Issues a control command to the CD-ROM controller

Library Header File Original Introduced Documentation Date

libpsxcd psxcd.h No 0.15b 12/12/2019

Syntax

int CdControl(
u_char com, Command value
u_char *param, Command parameters
u_char *result) Pointer of buffer to store result

Description

Issues a CD-ROM command specified by com to the CD-ROM controller, waits for a command acknowledge
interrupt (very fast) then returns. It will also issue parameters from param to the CD-ROM controller if the
specified command takes parameters. Data returned from the CD-ROM controller is stored to result if the
specified command returns data.

Because this function waits for an acknowledge interrupt from the CD-ROM controller, this function should not
be used in a callback. Use CdControlF() instead.

Commands that are blocking require the use of CdSync() to wait for the command to fully complete.

CD-ROM Control Commands:

Command Value Parameter Blocking Description

CdlNop 0x01 - No Also known as Getstat, usually used
to acquire the current CD-ROM
status. This is also used to signal the
CD library if a disc change has
occurred.

CdlSetloc 0x02 CdlLOC No Sets the seek target location. Actual
seeking begins upon issuing
CdlSeekL, CdlSeekP, CdlPlay,
CdlReadN and CdlReadS
commands.

CdlPlay 0x03 u_char No Begins CD Audio playback. CD mode
must be set with CdlModeDA and
CdlSetMode flags to work properly.
CdlModeAP flag enables automatic
pause at end of track. Parameter
specifies the CD track to play and is
optional (Note: some emulators do not
support the optional track parameter).

CdlForward 0x04 - No Fast forward (only for CD Audio).
CdlBackward 0x05 - No Rewind (only for CD Audio).
CdlReadN 0x06 CdlLOC No Begin reading of data sectors.
CdlStandby 0x07 - Yes Also known as MotorOn, starts CD

motor and stays idle.
CdlStop 0x08 - Yes Stops playback as well as the disc

spinning.
CdlPause 0x09 - Yes Stops CD Audio/XA playback or data

reading without stopping the disc.

LibPSn00b Library Reference LACKING CONFIDENCE

12 CD-ROM Library

CdlInit 0x0A - Yes Initialize the CD-ROM controller.
CdlMute 0x0B - No Mutes CD audio (both DA and XA).
CdlDemute 0x0C - No Unmutes CD audio (both DA and XA).
CdlSetfilter 0x0D CdlFILTER No Sets XA audio filter.
CdlSetmode 0x0E u_char No Sets CD-ROM mode.
CdlGetparam 0x0F - No Returns current CD-ROM mode and

file/channel filter settings.
CdlGetlocL 0x10 - No Returns current logical CD position as

well as current mode and file/channel
filter settings.

CdlGetlocP 0x11 - No Returns current physical CD position.
CdlSetsession (OC) 0x12 u_char Yes Seek to a specified session on a

multi-session disc.
CdlGetTN 0x13 - No Get CD track count.
CdlGetTD 0x14 u_char No Get specified track position.
CdlSeekL 0x15 - Yes Logical seek to target position set by

last CdlSetloc command.
CdlSeekP 0x16 - Yes Physical seek to target position set by

last CdlSetloc command.
CdlTest (OC) 0x19 varies Yes Special test command not disclosed

to official developers.
CdlReadS 0x1B CdlLOC No Begin reading sectors without error

correction (for FMV streaming).

CD-ROM Return Values:

Command 0 1 2 3 4 5 6 7

CdlGetparam stat mode 0 file channel - - -
CdlGetlocL amin asec aframe mode file channel sm ci
CdlGetlocP track index min sec frame amin asec aframe
CdlGetTN stat first last - - - - -
CdlGetTD stat min sec - - - - -

All returned values are in BCD format.

Returns

1 if the command was issued successfully. Otherwise 0 if a previously issued command has not yet finished
processing.

See also

LACKING CONFIDENCE LibPSn00b Library Reference

CD-ROM Library 13

CdControlB
Issues a CD-ROM command to the CD-ROM controller (non-blocking)

Library Header File Original Introduced Documentation Date

libpsxcd.a psxcd.h No 0.15b 12/18/2019

Syntax

int CdControlB(
u_char com, Command value
u_char *param, Command parameters
u_char *result) Pointer of buffer to store result

Explanation

This function works more or less the same as CdControl() but blocks for blocking commands until the
command has completed.

Because this function waits for an acknowledge interrupt from the CD-ROM controller, this function should not
be used in a callback. Use CdControlF() instead.

See also

CdControl

LibPSn00b Library Reference LACKING CONFIDENCE

14 CD-ROM Library

CdControlF
Issues a CD-ROM command to the CD-ROM controller (does not block)

Library Header File Original Introduced Documentation Date

libpsxcd.a psxcd.h No 0.15b 12/19/2019

Syntax

int CdControlF(
u_char com, Command value
u_char *param) Command parameters

Explanation

This function works more or less the same as CdControl() but it does not block even for the acknowledge
interrupt from the CD-ROM controller. Since this function is non-blocking it can be used in a callback function.

When using this function in a callback, a maximum of two commands can be issued at once and only the first
command can have parameters. This is because the CD-ROM controller can only queue up to two
commands and the parameter FIFO is not cleared until the last command is acknowledged. But waiting for
acknowledgment in a callback is not possible.

See also

CdControl

LACKING CONFIDENCE LibPSn00b Library Reference

CD-ROM Library 15

CdGetToc
Get CD-ROM TOC information

Library Header File Original Introduced Documentation Date

libpsxcd.a psxcd.h No 0.15b 12/18/2019

Syntax

int CdGetToc(
CdlLOC *toc) Pointer to an array of CdlLOC entries

Explanation

Retrieves all the track entries from the CD-ROM’s table of contents (TOC). The function can return up to 99
track entries for it is the maximum number of tracks the CD-ROM standard supports.

The function can only retrieve the minutes and seconds of an audio track’s position as the CD-ROM controller
only returns the minutes and seconds of a track. This may result in the end of the previous track being played
instead of the intended track to be played. This can be remedied by having a 2 second pregap on each CD
Audio track.

See also

CdControl

LibPSn00b Library Reference LACKING CONFIDENCE

16 CD-ROM Library

CdGetSector
Get data from the CD-ROM sector buffered

Library Header File Original Introduced Documentation Date

libpsxcd.a psxcd.h No 0.15b 12/18/2019

Syntax

int CdGetSector(
void *madr, Pointer to store sector data to
int size) Number of bytes to retrieve

Explanation

Retrieves sector data pending in the CD-ROM sector buffer and stores it to a buffer specified by *madr when
a data sector has been read. Uses DMA to get the sector data at high speed.

This function is a bit of a work in progress as size must be 2048 bytes or longer depending on the CD mode.
If less than the desired sector size is retrieved a dummy read must be issued manually to clear the sector
buffer.

Returns

Always 1.

See also

CdReadyCallback

LACKING CONFIDENCE LibPSn00b Library Reference

CD-ROM Library 17

CdMode
Gets the last CD-ROM mode

Library Header File Original Introduced Documentation Date

libpsxcd.a psxcd.h No 0.15b 12/18/2019

Syntax

int CdMode(void)

Explanation

Returns the CD-ROM mode last set when issuing a CdlSetMode command. The function returns instantly as
it returns a value from an internal variable.

Since the value is simply a copy of what was specified from the last CdlSetMode command, the mode value
may become inaccurate if CdlInit or other commands that affect the CD-ROM mode were issued. This may
be corrected in the future.

Returns

CD-ROM mode last set.

LibPSn00b Library Reference LACKING CONFIDENCE

18 CD-ROM Library

CdMix
Set CD-ROM mixer or attenuation

Library Header File Original Introduced Documentation Date

libpsxcd.a psxcd.h No 0.15b 12/18/2019

Syntax

int CdMix(
CdlATV *vol) CD-ROM attenuation parameters.

Explanation

Sets the CD-ROM attenuation parameters from a CdlATV struct specified by *vol. The CD-ROM attenuation
settings is different from the SPU CD-ROM volume.

Returns

Always 1.

See also

CdlATV

LACKING CONFIDENCE LibPSn00b Library Reference

CD-ROM Library 19

CdStatus
Get the most recent CD-ROM status

Library Header File Original Introduced Documentation Date

libpsxcd.a psxcd.h No 0.15b 12/18/2019

Syntax

int CdStatus(void)

Explanation

Returns the CD-ROM status since the last command issued. The status value is updated by most CD-ROM
commands.

To get the current CD-ROM status you can issue CdlNop commands at regular intervals to update the CD-
ROM status this function returns.

Returns

CD-ROM status from last comand issued.

See also

CdControl

LibPSn00b Library Reference LACKING CONFIDENCE

20 CD-ROM Library

CdPosToInt
Translates CD-ROM positional coordinates to a sector number

Library Header File Original Introduced Documentation Date

libpsxcd.a psxcd.h No 0.15b 12/18/2019

Syntax

int CdPosToInt(
CdlLOC *p) Pointer to a CdlLOC struct.

Explanation

Translates the CD-ROM positional coordinates from a CdlLOC struct specified by p to a logical sector
number. The translation takes the lead-in offset into account so the logical sector number begins at 0.

Returns

Logical sector number.

LACKING CONFIDENCE LibPSn00b Library Reference

CD-ROM Library 21

CdIntToPos
Translates a sector number to CD-ROM positional coordinates

Library Header File Original Introduced Documentation Date

libpsxcd.a psxcd.h No 0.15b 12/18/2019

Syntax

CdlLOC *CdIntToPos(
int i, Logical sector number
CdlLOC *p) Pointer to a CdlLOC structure

Explanation

This function translates a logical sector number specified by i to CD-ROM positional coordinates stored to a
CdlLOC struct specified by p. The translation takes the lead-in offset into account so the first logical sector
begins at 0.

Returns

Pointer to the specified CdlLOC struct.

LibPSn00b Library Reference LACKING CONFIDENCE

22 CD-ROM Library

CdInit
Initializes the CD-ROM library

Library Header File Original Introduced Documentation Date

libpsxcd psxcd.h No 0.15b 12/12/2019

Syntax

int CdInit(
int mode) Reserved (may be used in the future)

Description

Initializes the CD-ROM subsystem which includes hooking the required IRQ handler, sets up internal
variables of the CD-ROM library and attempts to initialize the CD-ROM controller. The mode parameter does
nothing but may be used in future updates of this library.

This function must be called after ResetGraph and before any other CD-ROM library function that interfaces
with the CD-ROM controller. This function may not be called twice as it may cause instability or would just
crash.

Returns

Always 1. May change in the future.

LACKING CONFIDENCE LibPSn00b Library Reference

CD-ROM Library 23

CdIsoError
Retrieve CD-ROM ISO9660 parser status

Library Header File Original Introduced Documentation Date

libpsxcd psxcd.h Yes 0.15b 02/18/2020

Syntax

int CdIsoError()

Explanation

Returns the status of the file system parser from the last call of a file system related function, such as
CdSearchFile(), CdGetVolumeLabel() and CdOpenDir(). Use this function to retrieve the exact error
occurred when either of those functions fail.

Returns

CD-ROM ISO9660 parser error code, as listed below.

Value Description

CdlIsoOkay File system parser okay.

CdlIsoSeekError Logical seek error occurred. May occur when attempting to query the file
system while an Audio CD is inserted, which does not contain a file system.

CdlIsoReadError Read error occurred while reading a file system descriptor.

CdlIsoInvalidFs Disc does not contain a standard ISO9660 file system.

LibPSn00b Library Reference LACKING CONFIDENCE

24 CD-ROM Library

CdOpenDir
Open a directory on the CD-ROM file system

Library Header File Original Introduced Documentation Date

libpsxcd.a psxcd.h Yes 0.15b 02/28/2020

Syntax

CdlDIR* CdOpenDir(
const char* path) Directory path to open.

Explanation

Opens a directory on the CD-ROM file system to read the contents of a directory.

A path name must use the backslash character (\) as the directory name separator (in C/C++, you must use
double backslash as backslash is used to specify special characters in strings). The path must start with a
backslash character and no device name (ie. \MYDIR1\MYDIR2 will work but not cdrom:\MYDIR1\MYDIR2).

The file system routines in libpsxcd can query directory paths of up to 128 characters.

The ISO9660 file system routines of libpsxcd does not support long file names as it only supports the original
file descriptor format, which is limited to MS-DOS style 8.3 file names.

Returns

Pointer of a CdlDIR context, NULL if an error occurred.

See also

CdReadDir CdCloseDir

LACKING CONFIDENCE LibPSn00b Library Reference

CD-ROM Library 25

CdRead
Read sectors from the CD-ROM

Library Header File Original Introduced Documentation Date

libpsxcd.a psxcd.h No 0.15b 12/18/2019

Syntax

int CdRead(
int sectors, Number of sectors to read
u_int *buf, Pointer to buffer to store sectors read
int mode) CD-ROM mode for reading

Explanation

Reads a number sectors specified by sectors from the location set by the last CdlSetloc command and
stores the data read to a buffer specified by buf. mode specifies the CD-ROM mode parameters to use for the
read operation.

The size of the sector varies depending on the sector read mode specified by mode. For standard data
sectors it is multiples of 2048 bytes. If CdlModeSize0 is specified the sector size is 2328 bytes which
includes the whole sector minus sync, adress, mode and sub header bytes. CdlModeSize1 makes the sector
size 2340 which is the entire sector minus sync bytes.

Ideally, CdlModeSpeed must be specified to read data sectors at double CD-ROM speed.

This function blocks very briefly to issue the necessary commands to start CD-ROM reading. To determine if
reading has completed use CdReadSync or CdReadCallback.

Returns

Always returns 0 even on errors. This may change in future versions.

LibPSn00b Library Reference LACKING CONFIDENCE

26 CD-ROM Library

CdReadCallback
Sets a callback function for read completion

Library Header File Original Introduced Documentation Date

libpsxcd.a psxcd.h No 0.15b 12/19/2019

Syntax

u_int CdReadCallback(
CdlCB func) Callback function

void (*func)(int status, CD-ROM status
u_char *result) Pointer to a result buffer

Explanation

Works much the same as CdSyncCallback() but for CdRead(). Sets a callback with the specified function
func. The callback is executed whenever a read operation initiated by CdRead() has completed.

status is the CD-ROM status from the command that has completed processing. *result points to a read result
buffer.

See also

CdRead

LACKING CONFIDENCE LibPSn00b Library Reference

CD-ROM Library 27

CdReadDir
Read a directory entry from an open directory context

Library Header File Original Introduced Documentation Date

libpsxcd.a psxcd.h No 0.15b 02/28/2020

Syntax

int CdReadDir(
CdlDIR *dir, Open directory context (from CdOpenDir())
CdlFILE *file) Pointer to a CdlFILE struct

Explanation

Retrieves a file entry from an open directory context and stores it to a CdlFILE struct specified by file.
Repeated calls of this function retrieves the next directory entry available until there are no more directory
entries that follow.

Returns

1 if there are proceeding directory entries that follow, otherwise 0.

See also

CdOpenDir

LibPSn00b Library Reference LACKING CONFIDENCE

28 CD-ROM Library

CdReadSync
Waits for CD-ROM read completion or returns read status

Library Header File Original Introduced Documentation Date

libpsxcd psxcd.h No 0.15b 12/19/2019

Syntax

int CdReadSync(
int mode, Mode
u_char *result) Pointer to store most recent CD-ROM status

Explanation

This function works more or less like CdSync() but for CdRead(). If mode is zero the function blocks if
CdRead() was issued earlier until reading has completed. If mode is non-zero the function returns a read
status value.

A buffer specified by result will be set with the most recent CD-ROM status value from the last read issued.

Returns

Command status is returned as one of the following definitions:

CdlComplete Read completed.
CdlNoIntr No interrupt, command busy.
CdlDiskError CD-ROM error occurred.

See also

CdRead

LACKING CONFIDENCE LibPSn00b Library Reference

CD-ROM Library 29

CdReadyCallback
Sets a callback function

Library Header File Original Introduced Documentation Date

libpsxcd psxcd.h No 0.15b 12/18/2019

Syntax

long CdReadyCallback(
CdlCB func) Callback function

void (*func)(int status, CD-ROM status
u_char *result) Pointer to a result buffer

Explanation

Sets a callback with the specified function func. The callback is executed whenever there’s an incoming data
sector from the CD-ROM controller during CdlReadN or CdlReadS. The pending sector data can be
retrieved using CdGetSector().

status is the CD-ROM status from the command that has completed processing. *result corresponds to the
*result parameter on CdControl()/CdControlB() and returns the pointer to the buffer last set with that
function.

This callback should be used in conjunction with CdRead() because that function uses this callback hook
internally. The previously set callback is retained upon read completion however.

Returns

Pointer to last callback function set.

See also

CdControl CdControlB

LibPSn00b Library Reference LACKING CONFIDENCE

30 CD-ROM Library

CdSearchFile
Locates a file in the CD-ROM file system

Library Header File Original Introduced Documentation Date

libpsxcd psxcd.h No 0.15b 12/19/2019

Syntax

CdlFILE *CdSearchFile(
CdlFILE *loc, Pointer to a CdlLOC struct to store file information
const char *filename) Path and name of file to locate

Explanation

Searches a file specified by filename by path and name in the CD-ROM file system and returns information of
the file if found. The file information acquired will be stored to loc.

Directories must be separated with backslashes (\) and a leading backslash is optional and paths must
reference from the root directory. File version identifier (;1) at the end of the file name is also optional. File
and directory names are case insensitive.

The ISO9660 file system routines of libpsxcd does not support long file names as it only supports the original
file descriptor format, which is limited to MS-DOS style 8.3 file names.

Upon calling this function for the first time, the ISO descriptor of the disc is read and the whole path table is
cached into memory. Next the directory descriptor of the particular directory specified is loaded and cached to
locate the file specified. The directory descriptor is kept in memory as long as the consecutive files to be
searched are stored in the same directory until a file in another directory is to be searched. On which the
directory descriptor is unloaded and a new directory descriptor is read from the disc and cached. Therefore,
locating files in the same directory is faster as the relevant directory descriptor is already in memory and no
disc reads are issued.

As of version 1.15b of the PSn00bSDK run-time library, there is currently no official method to tell
CdSearchFile to re-read the CD-ROM ISO descriptor and path table for disc changes. This will be resolved in
a future release.

Returns

Pointer to the specified CdlFILE struct. Otherwise NULL is returned when the file is not found.

LACKING CONFIDENCE LibPSn00b Library Reference

CD-ROM Library 31

CdSync
Wait for blocking command or blocking status

Library Header File Original Introduced Documentation Date

libpsxcd psxcd.h No 0.15b 12/18/2019

Syntax

int CdSync(
int mode, Mode
u_char *result) Pointer to store most recent CD-ROM status

Explanation

If mode is zero the function blocks if a blocking command was issued earlier until the command has finished.
If mode is non-zero the function returns a command status value.

A buffer specified by result will be set with the most recent CD-ROM status value from the last command
issued.

Returns

Command status is returned as one of the following definitions:

CdlComplete Command completed.
CdlNoIntr No interrupt, command busy.
CdlDiskError CD-ROM error occurred.

See also

CdControl

LibPSn00b Library Reference LACKING CONFIDENCE

32 CD-ROM Library

CdSyncCallback
Sets a callback function

Library Header File Original Introduced Documentation Date

libpsxcd psxcd.h No 0.15b 12/18/2019

Syntax

u_int CdSyncCallback(
CdlCB func) Callback function

void (*func)(int status, CD-ROM status
u_char *result) Pointer to a result buffer

Explanation

Sets a callback with the specified function func. The callback is executed whenever a blocking command has
completed.

status is the CD-ROM status from the command that has completed processing. *result corresponds to the
*result parameter on CdControl()/CdControlB() and returns the pointer to the buffer last set with that
function.

Returns

Pointer to last callback function set.

See also

CdControl CdControlB CdSync

LACKING CONFIDENCE LibPSn00b Library Reference

CD-ROM Library 33

Macros

btoi
Translates a BCD format value to decimal

Library Header File Original Introduced Documentation Date

libpsxcd.a psxcd.h No 0.15b 12/18/2019

Syntax

btoi(
b) BCD format value

Explanation

Translates a specified value in BCD format (ie. 32/0x20 = 20) into a decimal integer, as the CD-ROM
controller returns integer values only in BCD format.

LibPSn00b Library Reference LACKING CONFIDENCE

34 CD-ROM Library

itob
Translates a decimal value to BCD

Library Header File Original Introduced Documentation Date

libpsxcd.a psxcd.h No 0.15b 12/18/2019

Syntax

itob(
i) Decimal value

Explanation

Translates a decimal integer into a BCD format value (ie. 20 = 32/0x20), as the CD-ROM controller only
accepts values in BCD format.

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 35

Graphics Library

Chapter Contents
Graphics Library 35

Overview 37
Structures 38

DISPENV 38
DRAWENV 39
RECT 41
TIM_IMAGE 42

Structures (Primitives) 43
DR_MASK 43
DR_TPAGE 44
LINE_F2, LINE_F3, LINE_F4 45
LINE_G2, LINE_G3, LINE_G4 46
P_TAG 47
POLY_F3, POLY_F4 48
POLY_FT3, POLY_FT4 49
POLY_G3, POLY_G4 50
POLY_GT3, POLY_GT4 51
SPRT 53
SPRT_8, SPRT_16 54
TILE 55
TILE_1, TILE_8, TILE_16 56

Functions 57
AddPrim 57
ClearOTagR 58
DMACallback 59
DrawOTag 60
DrawPrim 61
DrawSync 62
DrawSyncCallback 63
GetInterruptCallback 64
GetTimInfo 65
GetVideoMode 66
InterruptCallback 67
LoadImage 68
PutDrawEnv 69
PutDispEnv 70
ResetGraph 71
SetDefDispEnv 72
SetDefDrawEnv 73
SetDispMask 74
SetVideoMode 75
StoreImage 76
VSync 77
VSyncCallback 78

Macros 79
addPrim 79
addPrims 80

LibPSn00b Library Reference LACKING CONFIDENCE

36 Graphics Library

getClut 81
getTPage 82
setClut 83
setDrawMask 84
setDrawTPage 85
setDrawTPageVal 86
setLineF2 87
setLineF3 88
setLineF4 89
setLineG2 90
setLineG3 91
setLineG4 92
setPolyF3 93
setPolyFT3 94
setPolyG3 95
setPolyGT3 96
setPolyF4 97
setPolyFT4 98
setPolyG4 99
setPolyGT4 100
setRECT 101
setSprt 102
setSprt8 103
setSprt16 104
setTexWindow 105
setTile 106
setTile1 107
setTile8 108
setTile16 109
setTPage 110
setVector 111

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 37

Overview
The graphics library provides functions for initializing and controlling the GPU hardware as well as various
structures and macros for preparing graphics primitives to be drawn by the GPU. This library does not provide
functions for 3D graphics processing, the Geometry Library (psxgte) provides such functions instead.

This library also provides a global ISR handler which other libraries depend on for handling interrupts and is
installed to the kernel by ResetGraph(). Even if you don’t plan to do any graphics, it is highly recommended to
call ResetGraph() at the beginning of your program.

LibPSn00b Library Reference LACKING CONFIDENCE

38 Graphics Library

Structures

DISPENV
Display environment structure

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.01b 06/07/2019

Structure

typedef struct {
RECT disp; Display coordinates (framebuffer position and resolution)
RECT screen; Screen coordinates (picture position and size)
char isinter; Interlace flag (0: non-interlace, 1: interlace)
char isrgb24; RGB24 color mode (0: 16-bit color mode, 1: 24-bit color mode)
short pad; Padding

} DISPENV;

Explanation

This structure specifies the display attributes to apply to the GPU using PutDispEnv().

The disp element specifies both the offset of the framebuffer area to be displayed (disp.x, disp.y) and display
resolution. Valid horizontal resolutions (for disp.w) are 256, 320, 384, 512 and 640 and vertical resolutions
(for disp.h) are 240 and 480 for NTSC standard and 256 and 512 for PAL standard. The display resolution
also determines the size of the rectangular area on the framebuffer to be displayed. If the display area
exceeds the framebuffer area the picture would simply wrap around to the other side of the framebuffer.

Apparently the GPU is capable of outputting 272 vertical lines in PAL standard even if you have the vertical
resolution set to 256. This is yet to be investigated further.

The screen element specifies the position (screen.x, screen.y) and size (screen.w, screen.h) of the picture
displayed on the TV screen. A position of (0, 0) is the base position of the picture and if the picture size is set
to (0, 0), default size values are used based on the resolution specified by the disp element. Specifying
values that are lower or greater than the resolution specified by disp can be used to achieve custom
resolutions but the hardware will not scale the pixels, it merely just crops or extends what is being shown.

The isinter flag specifies if the video signal should be interlaced. This flag must be set when using a vertical
resolution of 480 or 512 pixel lines, otherwise, only the even lines would be displayed or a strange video
collapse effect will occur (and no, the GPU hardware cannot output 480p at all). Interlace can be set for 240
and 256 line modes but it would introduce unnecessary jitter though it may help improve compatibility with
HDTVs and video capture devices that expect an interlace jitter signal.

The isrgb24 flag specifies 24-bit true-color mode and expands the display area by 1.5x horizontally to
accommodate the additional bytes needed for RGB24 pixels. This mode can’t be used for real-time graphics
as the GPU only renders at 16-bit color so 24-bit mode is most useful for FMV sequences or displaying
graphic illustrations from MDEC compressed image data (after decompression).

See also

PutDispEnv

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 39

DRAWENV
Drawing environment structures

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.01b 06/07/2019

Structure

typedef struct {
RECT clip; Drawing area in framebuffer within (0, 0) – (1023, 511)
short ofs[2]; GPU drawing offset (x, y)
RECT tw; Initial texture page window coordinates
u_short tpage; Initial texture page (see getTPage())
u_char dtd; Dither processing (0: no dithering, 1: dithered)
u_char dfe; Allow drawing to displayed area (0: don’t draw to display area, 1: draw)
u_char isbg; Draw area clear on environment set (0: no clear, 1: clear)
u_char r0,g0,b0; Draw area clear color
DR_ENV dr_env; Drawing environment buffer (reserved)

} DRAWENV;

Explanation

This structure specifies the drawing attributes to apply to the GPU using PutDrawEnv().

The clip element specifies the rectangular area of the framebuffer that graphics primitives will be drawn to.
The drawing area can be of any arbitrary size as long as it is within the framebuffer area.

The ofs[] element specifies the X,Y coordinates of the GPU offset which is the position where a coordinate of
(0,0) will originate from. The coordinates specified are relative to the clip area coordinates.

The tw element specifies the texture window size and offset of the texture page. Currently that functionality is
not yet implemented in PSn00bSDK so this element does nothing.

The tpage element specifies the initial texture page value to set to the GPU. A texture page can be easily
calculated using getTPage() and the texture page can be changed mid-drawing using the DR_TPAGE packet.

The dtd element specifies if dither processing is enabled or not. The dither processing bit is merged with the
specified texture page value and could be disabled if a DR_TPAGE primitive was processed without the
dither processing bit set.

The dfe element specifies if drawing should be blocked if the area is occupied by a display area. This is
normally set to zero since most page flipping setups usually draw to an area not visible to the display and is
mandatory for hi-res modes as it would allow the GPU to only draw on rows that are not being displayed,
allowing for a pseudo double buffered setup. Setting this to non-zero would allow drawing in a display area as
well as draw on both fields in hi-res modes which might be useful for static menu screens in hi-res.

The isbg element specifies if the drawing area should be cleared when this structure is applied using
PutDrawEnv(), recommended for instances where the screen is constantly being updated. The clear color is
specified using the r0,g0,b0 elements.

The dr_env element is a reserved element used as a buffer by PutDrawEnv(). The DR_ENV structure can be
used as a primitive packet to change the drawing environment mid-drawing for split-screen setups or off-
screen render-to-texture tricks for example.

Work in progress

The tw element has no effect to the drawing environment as of version 0.09b.

See also

LibPSn00b Library Reference LACKING CONFIDENCE

40 Graphics Library

PutDrawEnv

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 41

RECT
Defines a rectangular area

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.01b 12/21/2018

Structure

typedef struct {
short x,y; Top left coordinates of the rectangular area
short w,h; Width and height of the rectangular area

} RECT;

Explanation

Used to define a rectangular area in various structures and functions.

LibPSn00b Library Reference LACKING CONFIDENCE

42 Graphics Library

TIM_IMAGE
Texture Image parameters

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.01b 02/02/2019

Structure

typedef struct {
u_int mode; Image mode (bit 0-3: color depth, bit 4: CLUT flag)
RECT *crect; Pointer to CLUT rectangle coordinates
u_int *caddr; Pointer to CLUT data (or NULL if no CLUT)
RECT *prect; Pointer to pixel data rectangle coordinates
u_int *paddr; Pointer to pixel data

} TIM_IMAGE;

Explanation

Used to store texture image parameters from a TIM file with GetTimInfo. The crect, caddr, prect and paddr
elements can be referenced directly to access TIM coordinates and data easily.

See also

GetTimInfo

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 43

Structures (Primitives)

DR_MASK
Mask mode primitive

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h Yes 0.01b 07/17/2019

Structure

typedef struct {
u_int tag; Pointer to next primitive + length of this packet
u_int code[1]; Drawing mask primitive code

} DR_MASK;

Explanation

Sets the drawing mask setting of the GPU, a limited implementation of stencil masks.

See also

setDrawMask

LibPSn00b Library Reference LACKING CONFIDENCE

44 Graphics Library

DR_TPAGE
Texture page primitive

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.01b 07/16/2019

Structure

typedef struct {
u_int tag; Pointer to next primitive + length of this packet
u_int code[1]; Texture page primitive code

} DR_TPAGE;

Explanation

A texture page primitive, used to change the current Tpage of the GPU mid-drawing.

Used alongside primitives that lack a Tpage field, such as SPRT, SPRT_8 and SPRT_16 primitives, and for
setting the blend operator of untextured primitives, such as TILE, TILE_1, TILE_8, TILE_16, POLY_F3,
POLY_F4, POLY_G3, and POLY_G4 primitives, that have been set for semi-transparency.

See also

setDrawTPage setDrawTPageVal

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 45

LINE_F2, LINE_F3, LINE_F4
2-point, 3-point and 4-point solid colored line primitives

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.12b 07/16/2019

Structure

typedef struct {
u_int tag; Pointer to next primitive + length of this packet
u_char r0,g0,b0,code; RGB color + primitive code
short x0,y0; Screen coordinates 0
short x1,y1; Screen coordinates 1

} LINE_F2;

typedef struct {
u_int tag; Pointer to next primitive + length of this packet
u_char r0,g0,b0,code; RGB color + primitive code
short x0,y0; Screen coordinates 0
short x1,y1; Screen coordinates 1
short x2,y2; Screen coordinates 2
u_int pad; Terminator value (usually 0x55555555)

} LINE_F3;

typedef struct {
u_int tag; Pointer to next primitive + length of this packet
u_char r0,g0,b0,code; RGB color + primitive code
short x0,y0; Screen coordinates 0
short x1,y1; Screen coordinates 1
short x2,y2; Screen coordinates 2
short x3,y3; Screen coordinates 3
u_int pad; Terminator value (usually 0x55555555)

} LINE_F4;

Explanation

LINE_F2 draws a solid colored 2-point line between (x0, y0) – (x1, y1) with color specified by (r0, g0, b0).

LINE_F3 draws a solid colored 3-point line around (x0, y0) – (x1, y1) – (x2, y2) with color specified by (r0, g0,
b0).

LINE_F4 draws a solid colored 4-point line around (x0, y0) – (x1, y1) – (x2, y2) – (x3, y3) with color specified
by (r0, g0, b0).

See also

setLineF2 setLineF3 setLineF4

LibPSn00b Library Reference LACKING CONFIDENCE

46 Graphics Library

LINE_G2, LINE_G3, LINE_G4
2-point, 3-point and 4-point shaded line primitives

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.12b 07/16/2019

Structures

typedef struct {
u_int tag; Pointer to next primitive + length of packet
u_char r0,g0,b0,code; RGB color 0 + primitive code
short x0,y0; Screen coordinates 0
u_char r1,g1,b1,p1; RGB color 1 + padding
short x1,y1; Screen coordinates 0

} LINE_G2;

typedef struct {
u_int tag; Pointer to next primitive + length of packet
u_char r0,g0,b0,code; RGB color 0 + primitive code
short x0,y0; Screen coordinates 0
u_char r1,g1,b1,p1; RGB color 1 + padding
short x1,y1; Screen coordinates 1
u_char r2,g2,b2,p2; RGB color 2 + padding
short x2,y2; Screen coordinates 2
u_int pad; Terminator value (usually 0x55555555)

} LINE_G3;

typedef struct {
u_int tag; Pointer to next primitive + length of packet
u_char r0,g0,b0,code; RGB color 0 + primitive code
short x0,y0; Screen coordinates 0
u_char r1,g1,b1,p1; RGB color 1 + padding
short x1,y1; Screen coordinates 1
u_char r2,g2,b2,p2; RGB color 2 + padding
short x2,y2; Screen coordinates 2
u_char r3,g3,b3,p3; RGB color 3 + padding
short x3,y3; Screen coordinates 3
u_int pad; Terminator value (usually 0x55555555)

} LINE_G4;

Explanation

LINE_F2 draws a solid colored 2-point line between (x0, y0) – (x1, y1) with color specified by (r0, g0, b0) –
(r1, g1, b1).

LINE_F3 draws a solid colored 3-point line around (x0, y0) – (x1, y1) – (x2, y2) with color specified by (r0, g0,
b0) – (r1, g1, b1) – (r2, g2, b2).

LINE_F4 draws a solid colored 4-point line around (x0, y0) – (x1, y1) – (x2, y2) – (x3, y3) with color specified
by (r0, g0, b0) – (r1, g1, b1) – (r2, g2, b2) – (r3, g3, b3).

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 47

P_TAG
Generic primitive header

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.01b 06/08/2019

Structure

typedef struct {
u_int addr:24; Next primitive address
u_int len:8; Primitive length (in words)
u_char r,g,b; Primitive color
u_char code; Primitive code

} P_TAG;

Explanation

Normally used in various primitive preparation macros and the addPrim macro.

LibPSn00b Library Reference LACKING CONFIDENCE

48 Graphics Library

POLY_F3, POLY_F4
3-point and 4-point, untextured, flat shaded polygon primitives

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.01b 06/08/2019

Structure

typedef struct {
u_int tag; Pointer tag to primitive + packet length
u_char r0,g0,b0,code; RGB color + primitive code
short x0,y0; Screen coordinates 0
short x1,y1; Screen coordinates 1
short x2,y2; Screen coordinates 2

} POLY_F3;

typedef struct {
u_int tag; Pointer tag to primitive + packet length
u_char r0,g0,b0,code; RGB color + primitive code
short x0,y0; Screen coordinates 0
short x1,y1; Screen coordinates 1
short x2,y2; Screen coordinates 2
short x3,y3; Screen coordinates 3

} POLY_F4;

Explanation

POLY_F3 draws a 3-point flat shaded, untextured polygon to screen coordinates (x0,y0) – (x1,y1) – (x2,y2).

POLY_F4 draws a 4-point flat shaded, untextured polygon to screen coordinates (x0,y0) – (x1,y1) – (x2,y2) –
(x3,y3).

Elements r0, g0, b0 specifies the color of the primitive.

Use setPolyF3 and setPolyF4 macros respectively to initialize the primitive before adding it to an ordering
table.

The following figure describes the vertex order for 4-point polygons:

V0 V1

V2 V3

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 49

POLY_FT3, POLY_FT4
3-point and 4-point, textured, flat shaded polygon primitives

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.01b 06/08/2019

Structure

typedef struct {
u_int tag; Pointer tag to primitive + packet length
u_char r0,g0,b0,code; RGB color + primitive code
short x0,y0; Screen coordinates 0
u_char u0,v0; Texture coordinates 0
u_short clut; Texture CLUT ID
short x1,y1; Screen coordinates 1
u_char u1,v1; Texture coordinates 1
u_short tpage; Texture page
short x2,y2; Screen coordinates 2
u_char u2,v2; Texture coordinates 2
u_short pad; Padding

} POLY_FT3;

typedef struct {
u_int tag; Pointer tag to primitive + packet length
u_char r0,g0,b0,code; RGB color + primitive code
short x0,y0; Screen coordinates 0
u_char u0,v0; Texture coordinates 0
u_short clut; Texture CLUT ID
short x1,y1; Screen coordinates 1
u_char u1,v1; Texture coordinates 1
u_short tpage; Texture page
short x2,y2; Screen coordinates 2
u_char u2,v2; Texture coordinates 2
u_short pad0; Padding
short x3,y3; Screen coordinates 3
u_char u3,v3; Texture coordinates 3
u_short pad1; Padding

} POLY_FT4;

Explanation

POLY_FT3 draws a 3-point flat shaded, textured polygon to screen coordinates (x0,y0) – (x1,y1) – (x2,y2).

POLY_FT4 draws a 4-point flat shaded, textured polygon to screen coordinates (x0,y0) – (x1,y1) – (x2,y2) –
(x3,y3).

Elements (u0,v0), (u1,v1), (u2,v2) and (u3,v3) specify the texture coordinates within the texture page
specified by tpage. Texture CLUT ID is specified by the clut element.

Elements r0, g0, b0 specifies the color of the primitive.

Use setPolyFT3 and setPolyFT4 macros respectively to initialize the primitive before adding it to an ordering
table.

See POLY_F3, POLY_F4 for a visual figure of the vertex order for 4-point polygons.

LibPSn00b Library Reference LACKING CONFIDENCE

50 Graphics Library

POLY_G3, POLY_G4
3-point and 4-point, untextured, gouraud shaded polygon primitives

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.01b 06/08/2019

Structure

typedef struct {
u_int tag; Pointer tag to primitive + packet length
u_char r0,g0,b0,code; RGB color 0 + code
short x0,y0; Screen coordinates 0
u_char r1,g1,b1,pad0; RGB color 1
short x1,y1; Screen coordinates 1
u_char r2,g2,b2,pad1; RGB color 2
short x2,y2; Screen coordinates 2

} POLY_G3;

typedef struct {
u_int tag; Pointer tag to primitive + packet length
u_char r0,g0,b0,code; RGB color 0 + code
short x0,y0; Screen coordinates 0
u_char r1,g1,b1,pad0; RGB color 1 + padding
short x1,y1; Screen coordinates 1
u_char r2,g2,b2,pad1; RGB color 2 + padding
short x2,y2; Screen coordinates 2
u_char r3,g3,b3,pad2; RGB color 3 + padding
short x3,y3; Screen coordinates 3

} POLY_G4;

Explanation

POLY_G3 draws a 3-point flat shaded, textured polygon to screen coordinates (x0,y0) – (x1,y1) – (x2,y2).

POLY_G4 draws a 4-point flat shaded, textured polygon to screen coordinates (x0,y0) – (x1,y1) – (x2,y2) –
(x3,y3).

Elements (r0,g0,b0), (r1,g1,b1), (r2,g2,b2) and (r3,g3,b3) specifies the color of the primitive for each point.

Use setPolyG3 and setPolyG4 macros respectively to initialize the primitive before adding it to an ordering
table.

See POLY_F3, POLY_F4 for a visual figure of the vertex order for 4-point polygons.

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 51

POLY_GT3, POLY_GT4
3-point and 4-point, textured, gouraud shaded polygon primitives

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.01b 06/08/2019

Structure

typedef struct {
u_int tag; Pointer tag to primitive + packet length
u_char r0,g0,b0,code; RGB color 0 + code
short x0,y0; Screen coordinates 0
u_char u0,v0; Texture coordinates 0
u_short clut; Texture CLUT ID
u_char r1,g1,b1,pad0; RGB color 1
short x1,y1; Screen coordinates 1
u_char u1,v1; Texture coordinates 1
u_short tpage; Texture page ID
u_char r2,g2,b2,pad1; RGB color 2
short x2,y2; Screen coordinates 2
u_char u2,v2; Texture coordinates 2
u_short pad2; Padding

} POLY_GT3;

typedef struct {
u_int tag; Pointer tag to primitive + packet length
u_char r0,g0,b0,code; RGB color 0 + code
short x0,y0; Screen coordinates 0
u_char u0,v0; Texture coordinates 0
u_short clut; Texture CLUT ID
u_char r1,g1,b1,pad0; RGB color 1
short x1,y1; Screen coordinates 1
u_char u1,v1; Texture coordinates 1
u_short tpage; Texture page ID
u_char r2,g2,b2,pad1; RGB color 2
short x2,y2; Screen coordinates 2
u_char u2,v2; Texture coordinates 2
u_short pad2; Padding
u_char r3,g3,b3,pad3; RGB color 3
short x3,y3; Screen coordinates 3
u_char u3,v3; Texture coordinates 3
u_short pad4; Padding

} POLY_GT4;

Explanation

POLY_GT3 draws a 3-point gouraud shaded, textured polygon to screen coordinates (x0,y0) – (x1,y1) –
(x2,y2).

POLY_GT4 draws a 4-point gouraud shaded, textured polygon to screen coordinates (x0,y0) – (x1,y1) –
(x2,y2) – (x3,y3).

Elements (u0,v0), (u1,v1), (u2,v2) and (u3,v3) specify the texture coordinates within the texture page
specified by tpage. Texture CLUT ID for color-index textures is specified by the clut element.

LibPSn00b Library Reference LACKING CONFIDENCE

52 Graphics Library

Elements (r0,g0,b0), (r1,g1,b1), (r2,g2,b2) and (r3,g3,b3) specifies the color of the primitive for each point.

Use setPolyGT3 and setPolyGT4 macros respectively to initialize the primitive before adding it to an
ordering table.

See POLY_F3, POLY_F4 for a visual figure of the vertex order for 4-point polygons.

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 53

SPRT
Any-size textured sprite

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.01b 05/23/2019

Structure

typedef struct {
u_int tag; Pointer tag to next primitive packet
u_char r0,g0,b0,code; RGB color of sprite + packet code
short x0,y0; Position of sprite
u_char u0,v0; Sprite texture coordinates within texture page. u0 must be a multiple of 2
u_short clut; Sprite texture CLUT ID (see getClut)
u_short w,h; Sprite size (w must be a multiple of 2)

} SPRT;

Explanation

Draws a textured sprite primitive of any defined size, draws faster than POLY_FT4 but lacks the authority for
scaling and rotation.

If you use a sprite size greater than 256x256 (or the size of the texture window), the texture will simply
repeat.

Because the SPRT primitive has no element to specify a texture page, a DR_TPAGE primitive can be used to
work around that limitation. In order for the primitive to be effective, it must be added to the ordering table
after the SPRT primitive has been sorted and both primitives must be added to the same element of the
ordering table.

Use setSprt to initialize the primitive before adding it to the ordering table.

LibPSn00b Library Reference LACKING CONFIDENCE

54 Graphics Library

SPRT_8, SPRT_16
Fixed size 8 x 8 or 16 x 16 textured sprite

Library Header Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.01b 05/23/2019

Structure

typedef struct {
u_int tag; Pointer tag to next primitive packet
u_char r0,g0,b0,code; RGB color of sprite + primitive code
short x0,y0; Position of sprite (top-left coordinates)
u_char u0,v0; Sprite texture coordinates within texture page, u0 must be a multiple of 2
u_short clut; Sprite texture CLUT ID (see getClut)

} SPRT_8;

typedef struct {
u_int tag; Pointer tag to next primitive packet
u_char r0,g0,b0,code; RGB color of sprite + primitive code
short x0,y0; Position of sprite (top-left coordinates)
u_char u0,v0; Sprite texture coordinates within texture page, u0 must be a multiple of 2
u_short clut; Sprite texture CLUT ID (see getClut)

} SPRT_16;

Explanation

Draws a fixed size 8 x 8 or 16 x 16 pixel textured sprite, supposedly faster than SPRT.

Much like SPRT it has no texture page element so a DR_TPAGE primitive must be added to the ordering
table after the SPRT primitive to specify the desired texture page value.

Use setSprt8 and setSprt16 respectively to initialize the packet before adding it to an ordering table.

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 55

TILE
Any size flat colored sprite

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.01b 05/23/2019

Structure

typedef struct {
u_int tag; Pointer tag to next primitive packet
u_char r0,g0,b0,code; RGB color of tile + packet code
short x0,y0; Position of tile (top-left coordinate)
short w,h; Size of tile in pixels

} TILE;

Explanation

Draws a flat colored sprite of specified size.

Use setTile to initialize the packet before adding it to an ordering table.

LibPSn00b Library Reference LACKING CONFIDENCE

56 Graphics Library

TILE_1, TILE_8, TILE_16
Fixed size 1 x 1, 8 x 8 and 16 x 16 colored sprites.

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.1b 05/23/2019

Structure

typedef struct {
u_int tag; Pointer tag to next primitive packet
u_char r0,g0,b0,code; RGB color of tile + packet code
short x0,y0; Position of tile (top-left coordinates)

} TILE_1;

typedef struct {
u_int tag; Pointer tag to next primitive packet
u_char r0,g0,b0,code; RGB color of tile + packet code
short x0,y0; Position of tile (top-left coordinates)

} TILE_8;

typedef struct {
u_int tag; Pointer tag to next primitive packet
u_char r0,g0,b0,code; RGB color of tile + packet code
short x0,y0; Position of tile (top-left coordinates)

} TILE_16;

Explanation

Draws a fixed size 1 x 1, 8 x 8 or 16 x 16 flat colored sprite.

Use setTile1, setTile8, setTile16 to initialize the packet before adding it to an ordering table.

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 57

Functions

AddPrim
Non macro version of addPrim

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.01b 06/08/2019

Syntax

void AddPrim(
u_int *ot, Pointer to an ordering table element
void *p) Pointer to a primitive packet

Explanation

Links a primitive packet to an ordering table element by setting the value from the specified table element to
the primitive packet’s tag element (with the size byte retained) and the pointer to the packet is set to the
specified table element.

It is recommended to generate primitive packets in a global buffer to ensure that they do not get overwritten
when the GPU gets around to processing the primitive (ie. If you allocate the primitive as a local variable in a
function, it may have been overwritten when the GPU gets to draw it).

A common misconception among many PS1 homebrew programmers is they sometimes believe only a single
primitive packet can be added to each ordering table element. This is false because adding another primitive
to an ordering table element that already has a primitive concatenates to the chain, not replace the element.

Therefore, an ordering table length of 4 to 8 elements is usually enough for purely 2D projects. Higher
ordering table sizes are recommended for projects featuring 3D visuals.

See also

ClearOTagR DrawOTag

LibPSn00b Library Reference LACKING CONFIDENCE

58 Graphics Library

ClearOTagR
Initializes an array to an empty ordering table (reverse order)

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.01b 12/21/2018

Syntax

void ClearOTagR(
unsigned int *ot, Pointer to an array to initialize into a linked list
int n) Number of array elements

Explanation

Initializes an array of n elements specified by *ot into a linked list to use as an ordering table. An ordering
table consists of an array of pointers that point from one entry to the next which primitives may be added to
the chain.

This function uses DMA to clear the ordering table. It prepares a reverse order list which starts at the last
entry of the array and ends at the first. This is ideal for 3D graphics as higher table entries are drawn first and
lower entries are drawn last. Primitives added to one entry first are always drawn last.

To begin processing of an ordering table array initialized by this function, execute DrawOTag(ot+n-1) (draw
from last entry of array) since the ordering table is initialized with pointers in reverse order.

When adding an ordering table to another ordering table using addPrims, specify the last element for p0 and
the first element for p1 if the ordering table is cleared by this function.

See Also

DrawOTag

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 59

DMACallback
Sets a callback routine for a DMA interrupt

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.10b 07/16/2019

Syntax

void *DMACallback(
int dma, DMA channel to set callback
void (*func)()) Callback function

Explanation

Sets a callback function specified by func to a DMA channel specified by dma, executed whenever a DMA
transfer for the specified channel finishes. Calling this function will automatically install a handler on IRQ3
using InterruptCallback to handle DMA interrupts.

This function is not normally exposed to programmers in the official SDK, but is made available in LibPSn00b
for low-level prototyping and advanced low-level programmers. Use this function only if you know exactly
what you're doing.

The following lists the hardware device associated with each DMA channel:

Channel Device

0 MDEC input
1 MDEC output
2 GPU (used by libpsxgpu)
3 CD-ROM
4 SPU
5 PIO
6 OTC (used by libpsxgpu)

Setting a DMA callback automatically adds an interrupt callback on IRQ3 using InterruptCallback(). If a
callback routine on IRQ3 has already set, DMACallback will not set its own handler.

The callback is never an interrupt handler and a callback function must be written as a normal function. Since
the callback function is called within an exception handler, function must return as soon as possible.
Recursive function calls must be kept a minimum due to limited stack. DMA interrupt status bits are
automatically acknowledged so the callback routine does not need to acknowledge it manually.

To uninstall a callback routine, simply specify NULL or 0 for func. It will also remove the IRQ enable bit of the
corresponding DMA channel. If all DMA callbacks have been removed, the DMA callback handler is removed
from the ISR.

Returns

Pointer to the last installed callback routine.

LibPSn00b Library Reference LACKING CONFIDENCE

60 Graphics Library

DrawOTag
Executes an ordering table

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.01b 12/21/2018

Syntax

void DrawOTag(
u_int *ot) Pointer to an ordering table to execute.

Explanation

Executes primitives linked into an ordering table array specified by *ot.

When executing an ordering table initialized by ClearOTagR, you must specify the last entry in the array.

DrawOTag uses DMA to query primitives to the GPU and may be non-blocking during DMA page gaps. Use
DrawSync to ensure execution of the ordering table has completed.

See also

DrawSync ClearOTagR

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 61

DrawPrim
Draws a primitive

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.12b 07/16/2019

Syntax

void DrawPrim(
void *pri) Pointer to a primitives

Explanation

Draws a primitive specified by pri. Uses software I/O to send the primitive to the GPU so its not
recommended for drawing all graphics.

Use only for drawing a few primitives in a very simple single buffered menu for example.

LibPSn00b Library Reference LACKING CONFIDENCE

62 Graphics Library

DrawSync
Waits until all GPU drawing or VRAM transfers have completed

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.01b 12/21/2018

Syntax

int DrawSync(
int mode) Function mode

Explanation

Waits until the GPU has finished processing drawing commands or VRAM transfers. If mode is non-zero,
returns the number of words remaining in a DMA transfer.

Work in progress

This function does not timeout if the GPU locks up due to a bad packet or corrupted ordering table as of
version 0.09b.

Returns

Number of words remaining in transfer if mode = 1.

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 63

DrawSyncCallback
Sets a callback function that is executed on drawing or VRAM transfer completion

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.10b 07/17/2019

Syntax

void *DrawSyncCallback(
void (*func)()) Pointer to a function

Explanation

Sets a callback function specified by func which will be executed on every drawing completion or VRAM
transfer. Setting 0 will disable the callback.

Because the callback function is executed inside an interrupt handler, it is necessary to finish any processing
as soon as possible. Sub function calls should be kept a minimum as the stack in the ISR is limited.

It is not recommended to issue VRAM or OT transfer operations within the callback function, use it only to set
variables for keeping track of drawing and transfer completions.

It is recommended to define any variable manipulated by a callback function as volatile, to make sure any
code reading the value will always receive changes.

See also

DrawSync

LibPSn00b Library Reference LACKING CONFIDENCE

64 Graphics Library

GetInterruptCallback
Returns the address of the callback function of a specified interrupt

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.10b 06/19/2019

Syntax

void *GetInterruptCallback(
int irq) Interrupt number

Explanation

Gets the address of the callback function of an interrupt.

Returns

Pointer to the callback function last set.

See also

InterruptCallback

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 65

GetTimInfo
Get image parameters of a TIM image file

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h Yes 0.01b 02/02/2019

Syntax

int GetTimInfo(
unsigned int *tim, Pointer to a TIM image file
TIM_IMAGE *timimg) Pointer to a TIM_IMAGE structure

Explanation

Retrieves parameters from a TIM file and stores relevant values to a TIM_IMAGE structure.

Return value

0: success, 1: invalid file ID, 2: unsupported TIM version

See also

TIM_IMAGE

LibPSn00b Library Reference LACKING CONFIDENCE

66 Graphics Library

GetVideoMode
Gets the current video standard mode

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.01b 2/2/2019

Syntax

int GetVideoMode()

Explanation

Returns the current video standard mode.

Differences

Unlike the official libraries, this function returns the video mode standard currently set (ie. If this function is
called on a PAL machine while in a PAL display mode, it returns 1 or MODE_PAL).

Returns

MODE_NTSC: NTSC, MODE_PAL: PAL

See also

SetVideoMode

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 67

InterruptCallback
Sets a callback routine for an interrupt

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.10b 07/16/2019

Syntax

void *InterruptCallback(
int irq, Interrupt number to install callback
void (*func)()) Callback function

Explanation

Sets a callback function specified by func to the ISR, which is executed whenever an interrupt specified by irq
occurs. Only one callback routine can be set per interrupt number at a time.

This is a special low-level function that is not normally used by programmers in the official SDK and is usually
only called internally by the libraries. It is exposed in LibPSn00b for better control over the hardware in
prototyping or when performing special operations. Use this function ONLY if you know exactly what you’re
doing.

The following lists the hardware device associated with each interrupt number:

Interrupt Device

0 Vsync (used by libpsxgpu)
1 GPU (triggered only by a special GPU packet)
2 CD-ROM
3 DMA
4 Timer 0
5 Timer 1
6 Timer 2
7 Pad & Memory card
8 Serial (used by libpsxsio)
9 SPU
10 Light-gun & Expansion port

Most hardware devices would only generate an interrupt when enabled by their I/O port registers.

This function should only be called while in critical section. The ISR automatically acknowledges interrupts so
the callback routine does not need to acknowledge it (except hardware devices that additionally need to be
acknowledged by their I/O registers). Avoid calling too many sub functions in the callback routine as the size
of the stack in the ISR is limited.

To uninstall a callback routine, simply specify NULL or 0 for func. It will also remove the IRQ mask bit of the
corresponding interrupt in the IRQ hardware registers which disables the interrupt.

Returns

Pointer to the last installed callback routine.

LibPSn00b Library Reference LACKING CONFIDENCE

68 Graphics Library

LoadImage
Upload image data to VRAM

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.01b 12/21/2018

Syntax

void LoadImage(
RECT *rect, Pointer to a RECT specifying VRAM destination coordinates
unsigned int *data) Pointer to source image data

Explanation

Uploads image data from the source address data to VRAM. The image size and destination offset in VRAM
is specified by rect using a RECT object.

LoadImage uses DMA to upload data to VRAM at high speed and could be non-blocking, use DrawSync to
ensure the DMA transfer has completed. Using DrawSync when uploading multiple images at once is not
necessary as LoadImage will wait for a previous transfer to complete.

If you want to upload a texture image on every frame in a real time sequence, it is best to perform the upload
after a DrawSync call.

See also

DrawSync GetTimInfo

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 69

PutDrawEnv
Applies a DRAWENV structure

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.1b 06/07/2019

Syntax

void PutDrawEnv(
DRAWENV *draw) Pointer to a DRAWENV structures

Explanation

Applies the specified DRAWENV structure to the GPU. This function is best called when the GPU is not busy
processing any primitives. Use the DrawSync function to wait for the GPU to complete processing.

Alternatively, a DR_ENV struct can be used to change the drawing environment mid-drawing.

See also

DRAWENV

LibPSn00b Library Reference LACKING CONFIDENCE

70 Graphics Library

PutDispEnv
Applies a DISPENV structure

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.01b 06/07/2019

Syntax

void PutDispEnv(
DISPENV *disp) Pointer to a DISPENV structure

Explanation

Applies the specified DISPENV struct to the GPU. This function is best called immediately when a V-Blank
occurs (using VSync) when updating the screen regularly. Use the VSync function to wait for a V-Blank to
occur.

See also

DISPENV VSync

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 71

ResetGraph
Resets the graphics subsystem

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.01b 06/07/2019

Syntax

void ResetGraph(
int mode) Reset mode

Explanation

Resets the GPU and graphics subsystem of libpsxgpu according to mode.

On first call, this function will additionally install its ISR subsystem to the kernel, installs its VSync callback,
uninstall the BIOS CD subsystem and exit critical section regardless of mode. Because of this, it is highly
recommended to call this function at the beginning of your program even if you don’t plan to do any graphics.

The following describes the behavior of the available mode numbers. The exact behavior in the official SDK is
not known yet.

Mode Operation

0 Resets the GPU entirely including video mode (default of 256x240) and sets
display mask to 0.

1 Cancels any DMA transfer and resets the GPU command buffer.
3 Resets the GPU command buffer.

LibPSn00b Library Reference LACKING CONFIDENCE

72 Graphics Library

SetDefDispEnv
Sets a display environment with default parameters

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.01b 06/08/2019

Syntax

SetDefDispEnv(
DISPENV *disp, Pointer to a DISPENV structure
int x, int y, X, Y framebuffer coordinates to display
int w, int h) Display resolution

Explanation

Prepares a DISPENV structure with the specified framebuffer and resolution coordinates using default video
parameters.

The defaults are the screen element of DISPENV is set to zeroes, isinter is set 0 and isrgb24 is set 0.

See also

DISPENV PutDispEnv

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 73

SetDefDrawEnv
Sets a drawing environment with default parameters

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.01b 06/08/2019

Syntax

SetDefDrawEnv(
DRAWENV *disp, Pointer to a DRAWENV structure
int x, int y, X, Y framebuffer coordinates to draw to
int w, int h) Draw area size

Explanation

Prepares a DRAWENV structure with the specified framebuffer and resolution coordinates using default
parameters.

The ofs[] elements of DRAWENV is set 0 (top-left), tw is set 0 (default texture window settings), tpage to 0x0a
(640, 0), dtd to 1 (dithering enabled), dfe to 0 (don’t draw to displayed area), isbg to 0 (no draw area clear)
and clear color values set to 0.

See also

DRAWENV PutDrawEnv

LibPSn00b Library Reference LACKING CONFIDENCE

74 Graphics Library

SetDispMask
Sets the display mask

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.01b 06/08/2019

Syntax

void SetDispMask(
int mask) Display mask setting (0: no display, 1: display)

Explanation

Sets the display mask of the GPU. If mask is 0, the console will only show a black screen.

This function is useful for hiding garbage shown during video init/setup. ResetGraph automatically sets the
display mask to 0.

Best called after VSync and PutDispEnv.

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 75

SetVideoMode
Sets the video standard

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.01b 07/17/2019

Syntax

void SetVideoMode(
int mode) Video standard to set

Explanation

Sets the video standard by mode (MODE_NTSC for NTSC or MODE_PAL for PAL), normally used to override
the video standard of the console.

Keep in mind that using a video standard other than the one specified by the region of the console will result
to color problems or unstable picture without modifications, depending on the model of the console.

LibPSn00b Library Reference LACKING CONFIDENCE

76 Graphics Library

StoreImage
Download image data from VRAM

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.12b 07/16/2019

Syntax

void StoreImage(
RECT *rect, Pointer to a RECT specifying VRAM source coordinates
unsigned int *data) Pointer to store downloaded image data

Explanation

Downloads a portion of VRAM from an area specified by rect, and stores the downloaded pixel data to a
buffer specified by data.

StoreImage uses DMA to upload data to VRAM at high speed and could be non-blocking, use DrawSync to
ensure the DMA transfer has completed.

See also

DrawSync

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 77

VSync
Wait for vertical retrace, or return elapsed vertical blank counter, or hblank count since last call

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.01b 06/23/2019

Syntax

void VSync(
int mode) Mode

Explanation

Waits until a vertical retrace occurs or returns a value using the method specified by mode, as defined below.

Mode Operation

0 Waits until a vertical retrace event occurs.
1 Only return the Hblank count elapsed since last VSync call.
n>1 Waits until n vertical retrace events occur.
n<0 Returns number of vertical retrace events elapsed since the start of the
program.

VSync() will timeout if the vertical blanking interrupt stops working either due to calling ChangeClearPAD(1),
or calling _InitPad() without calling ChangeClearPAD(0) next. The function will attempt to restart vertical
blanking interrupts by calling ChangeClearPAD(0) and ChangeClearRCnt(3, 0).

VSync() may also timeout if a large wait value is specified. Use a for-loop that calls VSync(0) instead to get
around this limitation.

Return value

Return value varies depending on the value specified by mode.

Mode Return value

>=0 Hblank count elapsed since last VSync call.
<0 Number of vertical retrace events elapsed since the start of your program.

See also

VSyncCallback

LibPSn00b Library Reference LACKING CONFIDENCE

78 Graphics Library

VSyncCallback
Sets a specified function to be executed on every V-blank

Library Header Original Introduced Documentation Date

liblibpsxgpu.a psxgpu.h No 0.01b 07/17/2019

Syntax

void *VsyncCallback(
void (*func)()) Pointer to a callback function

Explanation

Sets a callback function specified by func called on every V-blank. Setting 0 will disable the callback.

Because the callback function is executed during a critical section inside an ISR, it is necessary to finish any
processing quickly. Sub function calls should also be kept at minimum as the stack in the ISR is limited.

It is recommended to define any variable manipulated by a callback function as volatile to make sure that
any loop reading the value will always read the variable for changes.

Returns

Pointer to last callback function set.

See also

VSync

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 79

Macros

addPrim
Links a primitive packet to an ordering table

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.01b 06/07/2019

Syntax

addPrim(
ot, Pointer to an ordering table element
p) Pointer to a primitive packet

Explanation

Links a primitive packet to an ordering table element by setting the value from the specified table element to
the primitive packet’s tag element (with the size byte retained) and the pointer to the packet is set to the
specified table element.

It is recommended to generate primitive packets in a global buffer to ensure that they do not get overwritten
when the GPU gets around to processing the primitive (ie. If you allocate the primitive as a local variable in a
function, it may have been overwritten when the GPU gets to draw it).

A common misconception among PS1 homebrew programmers is that they sometimes believe that only a
single primitive packet can only be added to each ordering table element. This is false as adding another
primitive to an ordering table element that already has a primitive added to it will only add to the chain, not
replace it so pretty much any number of primitives can be added to a single table element. Therefore, an
ordering table length of 4 to 8 elements is usually enough for a 2D game project.

See also

ClearOTagR DrawOTag

LibPSn00b Library Reference LACKING CONFIDENCE

80 Graphics Library

addPrims
Links an ordering table to another ordering table

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.01b 06/07/2019

Syntax

addPrims(
ot, Pointer to an ordering table element
p0, Pointer to the first element of the ordering table to add
p1) Pointer to the last element of the ordering table to addition

Explanation

This macro links one ordering table specified by p0 and p1 to another ordering table.

The ordering table element that is considered the first element in the chain depends on which function was
used to prepare the ordering table. If the ordering table was cleared using ClearOTagR the last element of the
array is the first and the first element is the last, if the ordering table is cleared using ClearOTag the first
element in the array is the first and the last element is the last.

See also

ClearOTagR

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 81

getClut
Calculates and returns a CLUT value

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.01b 07/17/2019

Syntax

getClut(
x, y) Framebuffer coordinates to a CLUT

Explanation

Calculates a CLUT value from the specified coordinates. The resulting value is used on textured primitives
with a CLUT field. x must be a multiple of 16 units, the value will be rounded down to the nearest lower
multiple otherwise.

A CLUT is needed only if the texture color depth is 4-bit or 8-bit.

Primitives with a CLUT field include SPRT, SPRT_8, SPRT_16, POLY_FT3, POLY_FT4 and POLY_GT3,
POLY_GT4.

LibPSn00b Library Reference LACKING CONFIDENCE

82 Graphics Library

getTPage
Calculates and returns a texture page value

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.01b 07/16/2019

Syntax

getTPage(
tp, Texture color depth (0: 4-bit, 1: 8-bit, 2: 16-bit)
abr, Blend operator mode (see below)
x, y) Framebuffer coordinate of texture page

Explanation

Calculates a texture page value using the specified coordinates. The resulting value is used with textured
primitives that have a Tpage field or a DR_TPAGE primitive (using setDrawTPageVal).

The framebuffer coordinates should be a multiple of 64 for the X axis and a multiple of 256 for the Y axis, the
coordinates will be rounded down to the nearest lower multiple otherwise.

The following lists the blend modes for semi-transparent primitives (abr):

Mode Operation

0 B:50% + F:50% (50% alpha)
1 B:100% + F:100% (additive)
2 B:100% - F:100% (subtractive)
3 B:100% - F:25% (subtract 25%)

Primitives that have a Tpage field include POLY_FT3, POLY_FT4 and POLY_GT3, POLY_GT4, use
DR_TPAGE and setDrawTPage or setDrawTPageVal for textured primitives without a Tpage field.

Returns

16-bit texture page value.

See also

setDrawTPage setDrawTPageVal

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 83

setClut
Sets the CLUT field of a primitive by coordinates

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.01b 07/17/2019

Syntax

setClut(
p, Pointer to a primitive struct with a CLUT field
x, y) Framebuffer coordinates to a CLUT

Explanation

Sets the CLUT field of a primitive by framebuffer coordinates. x must be a multiple of 16 pixels, the value will
be rounded down to the nearest lower multiple otherwise.

Primitives with a CLUT field include SPRT, SPRT_8, SPRT_16, POLY_FT3, POLY_FT4 and POLY_GT3,
POLY_GT4.

See also

getClut

LibPSn00b Library Reference LACKING CONFIDENCE

84 Graphics Library

setDrawMask
Prepares a DR_MASK primitive

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h Yes 0.01b 07/17/2019

Syntax

setDrawMask(
p, Pointer to a DR_MASK primitive
sb, Set mask bit on pixels drawn (0: don’t set, 1: set)
mt) Mask test (0: draw always, 1: don’t draw on masked pixels)

Explanation

Prepares and sets the specified values to a DR_MASK primitive. The mask feature allows for limited stencil
effects with the GPU.

Setting sb to 1 makes primitives set the mask bit on every pixel drawn, the mask bit is stored on the 16 th bit of
each pixel within the drawing area. The mask is cleared by primitives if sb is set 0.

Textured primitives with semi-transparency bits set on either the pixels or CLUT colors of the texture will also
set this mask bit regardless of the sb setting. Setting mt to 1 enables mask test, which prohibits drawing on
areas that have the mask bit set in the drawing area.

The mask settings affects all GPU drawing packets as well as GPU VRAM transfer and move operations, it is
recommended to issue a DR_MASK with sb:0 and mt:0 to reset the mask settings after your mask effects.

See also

DR_MASK

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 85

setDrawTPage
Prepares a DR_TPAGE primitive

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.01b 07/16/2019

Syntax

setDrawTPage(
p, Pointer to a DR_TPAGE primitive
tp, Texture color depth (0: 4-bit, 1: 8-bit, 2: 16-bit)
abr, Blend operator mode (see getTPage)
x, y) Framebuffer coordinate of texture page

Explanation

Prepares and sets the specified values to a DR_TPAGE primitive, used to change the current Tpage of the
GPU mid-drawing for primitives that do not have a Tpage field, and/or to set a blending operator for semi-
transparent, non-textured primitives.

The framebuffer coordinates should usually be a multiple of 64 for the X axis and a multiple of 256 for the Y
axis, the coordinates will be rounded down to the nearest lower value otherwise. Texture color depth has no
effect on framebuffer coordinates.

See also

DR_TPAGE

LibPSn00b Library Reference LACKING CONFIDENCE

86 Graphics Library

setDrawTPageVal
Prepares a DR_TPAGE primitive

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h Yes 0.01b 07/16/2019

Syntax

setDrawTPageVal(
p, Pointer to a DR_TPAGE primitive
tp) Tpage value to set (see getTPage)

Explanation

Prepares a DR_TPAGE primitive similar to setDrawTPage, but takes a single Tpage value rather than a
bunch of parameters that define a Tpage.

A Tpage value is normally acquired using getTPage.

See also

DR_TPAGE

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 87

setLineF2
Prepares a LINE_F2 primitives

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.12b 07/16/2019

Syntax

setLineF2(
p) Pointer to a LINE_F2 primitive

Explanation

Prepares a LINE_F2 packet by setting the appropriate packet size and code values to the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also

LINE_F2, LINE_F3, LINE_F4

LibPSn00b Library Reference LACKING CONFIDENCE

88 Graphics Library

setLineF3
Prepares a LINE_F3 primitives

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.12b 07/16/2019

Syntax

setLineF3(
p) Pointer to a LINE_F3 primitive

Explanation

Prepares a LINE_F4 packet by setting the appropriate packet size and code values to the primitive, and sets
a terminator word at the end of the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also

LINE_F2, LINE_F3, LINE_F4

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 89

setLineF4
Prepares a LINE_F4 primitives

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.01b 06/07/2019

Syntax

setLineF4(
p) Pointer to a LINE_F4 primitive

Explanation

Prepares a LINE_F4 packet by setting the appropriate packet size and code values to the primitive, and adds
a terminator word at the end of the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also

LINE_F2, LINE_F3, LINE_F4

LibPSn00b Library Reference LACKING CONFIDENCE

90 Graphics Library

setLineG2
Prepares a LINE_G2 primitive

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.12b 06/07/2019

Syntax

setLineG2(
p) Pointer to a LINE_G2 primitive

Explanation

Prepares a LINE_G2 packet by setting the appropriate size and code values to the primitive, and adds a
terminator word at the end of the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also

LINE_G2, LINE_G3, LINE_G4

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 91

setLineG3
Prepares a LINE_G3 primitive

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No 0.12b 06/07/2019

Syntax

setLineG3(
p) Pointer to a LINE_G3 primitive

Explanation

Prepares a LINE_G3 packet by setting the appropriate size and code values to the primitive, and adds a
terminator word at the end of the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also

LINE_G2, LINE_G3, LINE_G4

LibPSn00b Library Reference LACKING CONFIDENCE

92 Graphics Library

setLineG4
Prepares a LINE_G4 primitive

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.01b 07/16/2019

Syntax

setLineG4(
p) Pointer to a LINE_G4 primitive

Explanation

Prepares a LINE_G4 packet by setting the appropriate size and code values to the primitive, and adds a
terminator word at the end of the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also

LINE_G2, LINE_G3, LINE_G4

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 93

setPolyF3
Prepares a POLY_F3 primitive

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.01b 06/07/2019

Syntax

setPolyF3(
p) Pointer to a POLY_F3 primitive

Explanation

Prepares a POLY_F3 packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also

POLY_F3

LibPSn00b Library Reference LACKING CONFIDENCE

94 Graphics Library

setPolyFT3
Prepares a POLY_FT3 primitive

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.01b 06/07/2019

Syntax

setPolyFT3(
p) Pointer to a POLY_FT3 packet

Explanation

Prepares a POLY_FT3 packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates, tpage, clut and color) to the primitive and before
adding it to an ordering table using addPrim.

See also

POLY_FT3

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 95

setPolyG3
Prepares a POLY_G3 primitive

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.01b 06/07/2019

Syntax

setPolyG3(
p) Pointer to a POLY_G3 packet

Explanation

Prepares a POLY_G3 packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also

POLY_G3

LibPSn00b Library Reference LACKING CONFIDENCE

96 Graphics Library

setPolyGT3
Prepares a POLY_GT3 primitive

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.01b 06/07/2019

Syntax

setPolyGT3(
p) Pointer to a POLY_G3 packet

Explanation

Prepares a POLY_GT3 packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates, tpage, clut and color) to the primitive and before
adding it to an ordering table using addPrim.

See also

POLY_GT3

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 97

setPolyF4
Prepares a POLY_F4 primitive

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.01b 06/07/2019

Syntax

setPolyF4(
p) Pointer to a POLY_F4 packet

Explanation

Prepares a POLY_F4 packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also

POLY_F4

LibPSn00b Library Reference LACKING CONFIDENCE

98 Graphics Library

setPolyFT4
Prepares a POLY_FT4 primitive

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.01b 06/07/2019

Syntax

setPolyFT4(
p) Pointer to a POLY_FT4 packet

Explanation

Prepares a POLY_FT4 packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates, tpage, clut and color) to the primitive and before
adding it to an ordering table using addPrim.

See also

POLY_FT4

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 99

setPolyG4
Prepares a POLY_G4 primitive

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.01b 06/07/2019

Syntax

setPolyG4(
p) Pointer to a POLY_G4 packet

Explanation

Prepares a POLY_G4 packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also

POLY_G4

LibPSn00b Library Reference LACKING CONFIDENCE

100 Graphics Library

setPolyGT4
Prepares a POLY_GT4 primitive

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.01b 06/07/2019

Syntax

setPolyGT4(
p) Pointer to a POLY_GT4 packet

Explanation

Prepares a POLY_GT4 packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates, tpage, clut and color) to the primitive and before
adding it to an ordering table using addPrim.

See also

POLY_GT4

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 101

setRECT
Sets coordinates to a RECT struct

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.01b 07/17/2019

Syntax

setRECT(
v, Pointer to a RECT struct
_x, X coordinate to set
_y, Y coordinate to set
_w, Width coordinate to set
_h) Height coordinate to set

Explanation

Sets the x, y, w, and h fields of a RECT specified by v, with coordinates specified by _x, _y, _w and _h.
Cleaner looking to use over setting the fields directly.

See also

RECT

LibPSn00b Library Reference LACKING CONFIDENCE

102 Graphics Library

setSprt
Prepares a SPRT primitive

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.01b 06/07/2019

Syntax

setSprt(
p) Pointer to a SPRT packet

Explanation

Prepares a SPRT packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y, coordinates, clut and color) to the primitive and before
adding it to an ordering table using addPrim.

See also

SPRT

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 103

setSprt8
Prepares a SPRT_8 primitive

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.01b 06/07/2019

Syntax

setSprt8(
p) Pointer to a SPRT_8 packet

Explanation

Prepares a SPRT_8 packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates, clut and color) to the primitive and before adding
it to an ordering table using addPrim.

See also

SPRT_8

LibPSn00b Library Reference LACKING CONFIDENCE

104 Graphics Library

setSprt16
Prepares a SPRT primitive

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.01b 06/07/2019

Syntax

setSprt16(
p) Pointer to a SPRT_16 packet

Explanation

Prepares a SPRT_16 packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates, clut and color) to the primitive and before adding
it to an ordering table using addPrim.

See also

SPRT_16

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 105

setTexWindow
Prepares a DR_TWIN primitive

Library Header File Original Introduced Date Documented

none psxgpu.h No 0.14b 10/22/2019

Syntax

setTexWindow(
p, Pointer to a DR_TWIN structure
r) Pointer to a RECT structure

Explanation

Prepares a DR_TWIN primitive by setting the packet size and packet code based on arguments specified.

The (x, y) coordinates in the RECT structure specifies the offset of the texture window in units of 8 pixels (1 =
8 pixels). The offset adds to the (u,v) coordinates of any textured primitive.

The (w, h) coordinates specifies the texture window constraint in units of 8 pixels (1 = 8 pixels). The constraint
limits the range of pixels that can be read, and wraps pixels when texture coordinates exceed the size of the
constraint.

LibPSn00b Library Reference LACKING CONFIDENCE

106 Graphics Library

setTile
Prepares a TILE primitive

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.01b 06/07/2019

Syntax

setTile(
p) Pointer to a TILE packet

Explanation

Prepares a TILE packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also

TILE

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 107

setTile1
Prepares a TILE_1 primitive

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.01b 06/07/2019

Syntax

setTile(
p) Pointer to a TILE_1 packet

Explanation

Prepares a TILE_1 packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also

TILE_1

LibPSn00b Library Reference LACKING CONFIDENCE

108 Graphics Library

setTile8
Prepares a TILE_8 primitive

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.01b 06/07/2019

Syntax

setTile8(
p) Pointer to a TILE_8 packet

Explanation

Prepares a TILE_8 packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also

TILE_8

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 109

setTile16
Prepares a TILE_16 primitive

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.01b 06/07/2019

Syntax

setTile16(
p) Pointer to a TILE_16 packet

Explanation

Prepares a TILE_16 packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also

TILE_16

LibPSn00b Library Reference LACKING CONFIDENCE

110 Graphics Library

setTPage
Sets the Tpage of a primitive by coordinates

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.01b 07/17/2019

Syntax

setTPage(
p, Pointer to a primitive with a Tpage field
tp, Texture color depth (0: 4-bit, 1: 8-bit, 2: 16-bit)
abr, Semi-transparency blend operator (see getTPage)
x, y) Framebuffer coordinates to a texture page

Explanation

Sets the Tpage field of a primitive by coordinates.

Primitives that have a Tpage field include POLY_FT3, POLY_FT4 and POLY_GT3, POLY_GT4.

See also

getTPage

LACKING CONFIDENCE LibPSn00b Library Reference

Graphics Library 111

setVector
Sets coordinates to a VECTOR or SVECTOR struct

Library Header File Original Introduced Date Documented

libpsxgpu.a psxgpu.h No 0.01b 07/17/2019

Syntax

setVector(
v, Pointer to a VECTOR or SVECTOR struct
_x, X coordinate to set
_y, Y coordinate to set
_z) Z coordinate to set

Explanation

Sets the vx, vy and vz fields of a VECTOR or SVECTOR struct specified by v, with coordinates specified by
_vx, _vy and _vz. Cleaner looking to use over setting the fields directly.

LibPSn00b Library Reference LACKING CONFIDENCE

112 Miscellaneous Library

Miscellaneous Library

Chapter Contents
Miscellaneous Library 112

Overview 113
Functions 114

FntLoad 114
FntOpen 115
FntPrint 116
FntFlush 117

LACKING CONFIDENCE LibPSn00b Library Reference

Miscellaneous Library 113

Overview
The miscellaneous library provides functions mostly to aid in prototyping and testing.

LibPSn00b Library Reference LACKING CONFIDENCE

114 Miscellaneous Library

Functions

FntLoad
Upload debug font texture to VRAM

Library Header File Original Introduced Documentation Date

libpsxetc.a psxetc.h No R1 09/25/2019

Syntax

void FntLoad(
int x, int y) Framebuffer coordinates to upload font texture

Explanation

Uploads the font texture to VRAM, so debug text drawing functions can be used. This function must be called
first before using FntOpen(), FntPrint() and FntFlush().

The size of the font texture is 32x64 plus a 16 color CLUT immediately below the texture. The X coordinate
must be a multiple of 64 and the Y coordinate a multiple of 256.

This function can also close all text streams previously created by FntOpen().

See also

FntOpen

LACKING CONFIDENCE LibPSn00b Library Reference

Miscellaneous Library 115

FntOpen
Opens a debug font text stream

Library Header File Original Introduced Documentation Date

libpsxetc.a psxetc.h No 0.13b 09/25/2019

Syntax

int FntOpen(
int x, int y, X,Y coordinate of text window
int w, int h, Width and height of text window
int isbg, Draw background (0: none, 1: black, 2: semi-transparent black)
int n) Number of characters to allocate

Explanation

Opens a text stream window using the debug font uploaded by FntLoad().

The text will only draw inside the area specified by (x,y)-(w,h), to allow you to crete multiple text streams at
different portions of the screen. The text will wrap if it passes the size of the specified window area. The
coordinates are draw area relative and not framebuffer absolute, so you don’t have to adjust it relative to your
current draw area coordinates.

Isbg specifies if a solid background should be drawn below the text to improve text readability. Specifying 1
draws a solid black rectangle as the text background, while a value of 2 draws a semi-transparent black
rectangle, which not only improves text readability but also allow graphics behind the window to be visible.

n specifies how many characters to allocate for the text stream.

Up to 8 text streams can be created at once. Previously opened streams can be closed and deallocated
using FntLoad.

Returns

Number of text stream opened, -1 if no more streams can be opened.

See also

FntLoad FntPrint

LibPSn00b Library Reference LACKING CONFIDENCE

116 Miscellaneous Library

FntPrint
Print text to specified text stream

Library Header File Original Introduced Documentation Date

libpsxetc.a psxetc.h No 0.13b 09/25/2019

Syntax

int FntPrint(
int id, Stream number (-1 = use last opened stream)
const char *fmt, Format string (same syntax as printf())
…) Text format arguments

Explanation

Prints text to the specified text stream created by FntOpen.

This function works much like fprintf(), but text output is directed to the debug font text stream. Id specifies
which text stream created by FntOpen to print the text to, or specify -1 to write the text to the last opened
stream.

Because of modern GCC requiring at least one named argument in function names, this function does not
have the same syntax as FntPrint in the official SDK, and a stream number must be specified at all times.

Use FntFlush to draw the text written in the specified text stream.

Returns

Number of characters written.

See also

FntLoad FntOpen FntFlush

LACKING CONFIDENCE LibPSn00b Library Reference

Miscellaneous Library 117

FntFlush
Draws a text stream

Library Header File Original Introduced Documentation Date

libpsxetc.a psxetc.h No 0.13b 09/25/2019

Syntax

char *FntFlush(
int id) Stream number (-1 = use last opened stream)

Explanation

Draws the text window and characters of the specified text stream.

The function waits for drawing to complete, then draws the primitives using DMA transfer and finally waits for
it to complete. This helps ensure the text primitives are fully drawn, though it may result to some performance
loss.

Returns

Pointer to an internal primitive buffer used to draw the text stream, can be drawn using DrawOTag.

See also

FntLoad FntOpen FntPrint

LibPSn00b Library Reference LACKING CONFIDENCE

118 Serial Input/Output Library

Serial Input/Output Library

Chapter Contents
Serial Input/Output Library 118

Overview 119
Functions 120

_sio_control 120
AddSIO 122
DelSIO 123
WaitSIO 124
Sio1Callback 125

LACKING CONFIDENCE LibPSn00b Library Reference

Serial Input/Output Library 119

Overview
The serial library provides functions to configure and control the serial interface of the PSX. It also provides a
custom device intended to replace the default tty device to direct tty output from printf() calls to the serial
interface, to be viewed in a serial terminal.

The PSX’s serial interface is capable of baud rates of up to 1Mbaud but 230400 baud is the highest data rate
that USB serial adapters (such as a CH340) can receive. Achieving reliable communications with high data
rates is yet to be studied further.

LibPSn00b Library Reference LACKING CONFIDENCE

120 Serial Input/Output Library

Functions

_sio_control
Serial control function

Library Header File Original Introduced Date Documented

libpsxsio.a psxsio.h No 0.10b 07/16/2019

Syntax

int _sio_control(
int cmd, Command
int arg, Subcommand
int param) Parameter

Explanation

Multi-purpose serial control function, used to control and retrieve every aspect of the serial interface.

The behavior of this function varies depending on the values specified by cmd and arg.

The following describes command value combinations:

cmd arg Function

0 0 Read serial status register.
0 1 Read serial control register.
0 2 Read serial mode register.
0 3 Read serial baud rate.
0 4 Read 1 byte from serial interface (returns byte

received).
1 1 Set serial control register.
1 2 Set serial mode (parameters specified by param).
1 3 Set serial baud rate (value specified by param).
1 4 Write 1 byte to serial interface (byte value specified by

param).
2 0 Reset serial interface.
2 1 Acknowledge serial interrupt and comms errors.

LACKING CONFIDENCE LibPSn00b Library Reference

Serial Input/Output Library 121

The following describes serial control options (some values not documented in official SDK):

Bits Definition Description

0 CR_TXEN TX enable.
1 CR_DTR Output DTR signal.
2 CR_RXEN RX enable.
3 CR_BRK Invert TX logic levels.
4 CR_INTRST Acknowledge IRQ and comms errors.
5 CR_RTS Output RTS signal.
6 CR_ERRRST Reset serial hardware.
7 Unknown (always 0).
8-9 Interrupt when RX buffer has n bytes.

CR_BUFSIZ_1 00: Interrupt on 1 byte.
CR_BUFSIZ_2 01: Interrupt on 2 bytes.
CR_BUFSIZ_4 10: Interrupt on 4 bytes.
CR_BUFSIZ_8 11: Interrupt on 8 bytes.

10 CR_TXIEN Interrupt on TX ready.
11 CR_RXIEN Interrupt on RX receive.
12 CR_DSRIEN Interrupt on DSR signal.
13-15 Unused (always zero).

The following describes serial mode options:

Bits Definition Description

0-1 None Baud rate reload factor (must be 0x2 always).
2-3 Character length.

MR_CHLEN_5 00: 5 bits per word.
MR_CHLEN_6 01: 6 bits per word.
MR_CHLEN_7 10: 7 bits per word.
MR_CHLEN_8 11: 8 bits per word.

4 MR_PEN Parity enable.
5 MR_P_EVEN Odd parity (definition is misleading).
6-7 Stop bit length.

MR_SB_01 01: 1 stop bit.
MR_SB_10 10: 1.5 stop bits.
MR_SB_11 11: 2 stop bits.

8-15 Unused (always zero).

The following describes serial status bits:

Bits Definition Description

0 SR_TXRDY TX ready.
1 SR_RXRDY Bytes pending in RX buffer.
2 SR_TXU TX completed.
3 SR_PERROR Parity error.
4 SR_OE RX buffer overflow.
5 SE_FE RX bad stop bit.
6 RX input level.
7 SR_DSR DSR signal level.
8 SR_CTS CTS signal level.
9 SR_IRQ Interrupt request.
10 Unknown (always zero).
11-25 15-bit baud rate timer.

LibPSn00b Library Reference LACKING CONFIDENCE

122 Serial Input/Output Library

AddSIO
Installs a serial tty device

Library Header File Original Introduced Date Documented

libpsxsio.a psxsio.h No 0.10b 06/14/2019

Syntax

void AddSIO(
int baud) Baud rate.

Explanation

Replaces the default BIOS tty device (and Caetla’s tty device) with a serial tty device which redirects all
stdout output (such as printf) to serial. The data rate is specified by baud, the rest of the parameters are 8
data bits, 1 stop bit, no parity and no hardware handshake by default.

This function can be called at the very beginning of your program (even before ResetGraph) to receive every
printf message in your program.

LACKING CONFIDENCE LibPSn00b Library Reference

Serial Input/Output Library 123

DelSIO
Deletes the serial tty device

Library Header File Original Introduced Date Documented

libpsxsio.a psxsio.h No 0.10b 06/14/2019

Syntax

void DelSIO(void)

Explanation

Deletes the serial tty device, not recommended as any further tty output will likely crash the system.

LibPSn00b Library Reference LACKING CONFIDENCE

124 Serial Input/Output Library

WaitSIO
Waits for serial

Library Header File Original Introduced Date Documented

libpsxsio.a psxsio.h Yes 0.10b 06/14/2019

Syntax

void WaitSIO(void)

Explanation

Waits until a single byte is received from the serial interface, intended to be called immediately after AddSIO
and is useful for pausing your program so you can open a terminal program and receive all tty messages.

LACKING CONFIDENCE LibPSn00b Library Reference

Serial Input/Output Library 125

Sio1Callback
Sets a serial callback routine

Library Header File Original Introduced Date Documented

libpsxsio.a psxsio.h No 0.10b 06/14/2019

Syntax

void *Sio1Callback(
void (*func)(void)) Callback function.

Explanation

Sets a function specified by func as a callback routine that is executed whenever the serial interface
generates an interrupt enabled by CR_TXIEN, CR_RXIEN or CR_DSRIEN using _sio_control(1, 1,
<param>). If func is zero, the callback is disabled.

It is recommended to read at least 1 byte from the serial interface and call _sio_control(2, 1, 0) to
acknowledge the serial interrupt at the end of your callback routine.

Since the callback function is executed in the global ISR, sub function calls must be kept at minimum due to
limited stack available. The callback function must return as soon as possible to avoid missing any further
interrupt requests.

Return value

Address of previously set callback function.

LibPSn00b Library Reference LACKING CONFIDENCE

