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1. INTRODUCTION

The performance analyzer visualizes information such as bus traffic by sampling the signals in the “PlayStation”. Some
expertise is required to tune a program based on such information. This manual details the expertise required. This manual
assumes that the user has read the "Performance Analyzer User's Manual" and is familiar with the method of using the
performance analyzer. This manual also assumes that the user is familiar with the architecture and programming of the
“PlayStation”, including programming techniques specific to high-speed processing in the “PlayStation”.

a) What Can the Performance Analyzer Do?

The performance analyzer enables its user to obtain information processed by the CPU and GPU. Based on this
information, the user can use programs to determine, for example, where the CPU is stalling, or the cause of reduced
drawing performance. However, the information obtained from the performance analyzer is, in itself, not enough to solve all
the problems that may occur. For example, the performance analyzer can detect cache misses, duplicate read accesses
and similar problems, but cannot indicate whether the actual algorithm of the program is satisfactory. Some programs may
be capable of much faster processing if the problem-solving techniques that they apply, including their algorithms, are
modified. For example, suppose that the user always wants to process all the circuit data of a racing game. This would
result in there being too much global data for the CPU to process for the polygons to be displayed. Tuning alone cannot
overcome this CPU bottleneck. To overcome this problem, high-speed processing should be implemented by the
application of a problem solving technique -- an example would be to divide the global data into groups to enable efficient
data access. Unfortunately, the performance analyzer cannot automatically analyze problem solving techniques to identify
such problems. Therefore, the programmer is responsible for determining whether a tuning technique is appropriate. The
performance analyzer should be used as a measuring tool to help the programmer make this decision.

The performance analyzer samples hardware signals directly, allowing it to double as a debugger. Since the performance
analyzer cannot measure signals in the instruction cache, scratch pad, and other devices inside the chip, however, its use is
limited as an alternative to a full-featured debugger or in-circuit emulator.

In summary, the performance analyzer can be used to:

- Determine the degree to which the current algorithm can improve performance, and identify those locations

where problems have arisen.

- Determine the currently available processing margin and how many more polygons could be displayed with

that margin, if any.

- Measure the processing speed of each candidate technique while considering which algorithm to use, and

also in the graphic design phase.

- Measure undesirable phenomena caused in real time by using the trigger function.

2. FLOW OF DIAGNOSIS

The “PlayStation” includes devices such as a CPU, GTE, GPU, MDEC, and DMA controller. All operate independently of
each other. The “PlayStation” can be thought of as a system in which a CPU and GPU operate in parallel. In many cases,
therefore, programs that run on the “PlayStation” are developed using the double-buffer method so that a CPU process
and GPU process can run concurrently to enable higher-speed processing. This means that the tuning of the CPU must be
balanced with that of the GPU to achieve high-speed processing. By monitoring the CPU and GPU buses, the performance
analyzer visualizes the processing states of the devices through main RAM bus analysis and video memory bus analysis.
Based on the above information, a program is diagnosed using the performance analyzer. The flow of the diagnosis is
outlined below.

(a) Measurement
Perform measurement of degraded processing, particularly of an overloaded scene or scene to be improved.
Detect degraded scenes using the trigger function.
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(b) Determining whether the bottleneck is in the CPU or GPU

Upon the completion of measurement, the results are displayed. From the main RAM bus analysis and video
RAM bus analysis, find the processing end points of a CPU process and GPU process. From the processing
end points, determine the process to be tuned.

b) When a CPU process is to be tuned

(a) Collecting a total statistical amount to determine whether a desired performance improvement can

be achieved by tuning

Align markers M1 and M2 with the start and end points of a CPU process, respectively, to collect statistical
information. From an estimate of the number of CPU stall cycles, check whether the desired improvement can be
made using the available tuning methods. If the check reveals that an improvement can be made, perform tuning
as described below.

(b) Finding the cause of an instruction cache miss

If an instruction cache miss produces a long CPU stall time, make improvements mainly where a stable pattern
endures for a long time. A portion with a stable pattern is regarded as performing loop processing, and further
improvement can be expected with less work. (This concept applies to improvements in data read/write access,
detailed later.) Enlarge such a section, read the symbol information, then detect the global symbols accessed in
that section to identify a function that causes a conflict in the instruction cache. Then, perform improvement by
changing the address of such a function, or by using inline expansion or DMPSX. Note, however, that the
method of changing the address of a function should be employed in the last stage because the method is
affected by modifications to the program source code.

(c) Detecting duplicate reads from main RAM

The “PlayStation” has no data cache. So, when a read access is made to main RAM as a result of a load
instruction, the CPU stalls for four cycles. This means that duplicate memory access should be avoided. Instead,
the scratch pad or a register should be used whenever possible. The performance analyzer displays the
read/write penalty "duplicate read" for a portion in which multiple read accesses have occurred successively with
no write operation performed. The ratio of the area of such a portion is regarded as representing a CPU stall time
caused by duplicate reads. For higher-speed processing, emphasis should be placed on finding such a section.
Some causes are listed below, together with the corresponding countermeasures.

(a) Move global data to the scratch pad before processing the global data.

(b) If a stack area is accessed, pass the argument(s) of a function to a register after reducing the nesting

level and the number of arguments. Or, allocate a stack in the scratch pad. (In the latter case, however,

note that the program may crash if the scratch pad overflows.)

(c) If a long expression is coded, some compilers may allocate a temporary variable in a stack area. This is
because such compilers assume no penalty in stack area access. In this case, decompose a long

expression explicitly, and use a register variable instead of a temporary variable. Or, allocate a temporary
variable in the scratch pad.

(d) Multiple half-word or byte-data accesses to adjacent areas eventually become multiple long-word

accesses. So, arrange the processing such that memory is accessed once on a long-word basis, with
conversion from long word to half-word or byte data being made between register variables.

(d) Detecting a write buffer flush penalty

With the “PlayStation”, a data write from the CPU to main RAM is performed through a four-stage write buffer.

This means that, usually, no penalty is incurred until the write buffer is full. If a write access is immediately followed
by a read access, however, the main RAM bus is not released until the write buffer has been entirely flushed. In
this case, the CPU stalls for about four cycles. The performance analyzer indicates such a stall time by the write
buffer penalty "flush penalty." Perform analysis, focusing on those portions that incur a long stall time, then
improve the efficiency by, for example, changing the order of reads and writes, and moving an instruction, if
possible, to a point after a write access.

If a CPU write cycle is immediately followed by another access on the main RAM bus, this analysis may indicate a
four-cycle penalty even when the CPU is actually executing another instruction. Thus, a penalty may be indicated
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when no stall has occurred. Therefore, assume that penalty indications merely represent the possibility of the
CPU having stalled due to flushing.

A flush penalty occurs, for example, when store and load instructions for the main RAM spaces are executed
alternately. In this case, the number of stall cycles can be reduced significantly by performing four write accesses
at a time.

¢) When a GPU process is to be tuned

(a) Checking for null packets

GPU packet analysis performs a check for null packets. If successive null packets are detected, the CPU tends
to stall because drawing stops and the main RAM bus is occupied accordingly. This problem often occurs when
a background packet is placed at the start of the ordering table, or when a space is drawn which has no object

at a given depth. If idle times caused by null packets cannot be ignored, place the background packet next to a
polygon placed at the far end to start drawing there, or use multiple ordering tables.

(b) Checking the drawing start point

Drawing is started by calling a function such as GsDrawOt. Check whether time-consuming processing is
inserted between the establishment of V blank synchronization (with a function such as VSync) and the start of
drawing.

(c) Checking areas with a low drawing efficiency

A video RAM bus analysis indicates the amount of data being transferred over the video RAM bus. A higher
value represents a higher transfer rate. A height approaching 100% is indicated for a transfer rate of 32 bits per
clock cycle. On the other hand, a half height represents a maximum rate, for example, in the drawing of a
polygon. Actually, however, the write transfer rate (indicated in green) is reduced for causes such as texture
reading, as described later. Check for an extremely low green pattern. Enlarge such a pattern, if any, to
determine the cause.

(d) Detecting a texture cache miss

In texture mapping, the GPU moves texture data to the internal texture cache before starting drawing. The size of
the texture cache is limited, however, so that a cache miss may occur frequently for polygons with a large texture
or for far polygons with an excessively high texture resolution. If a cache miss occurs, the GPU stops writing to
video RAM, and loads texture data into the texture cache. If video RAM read/write cycle switching occurs
frequently, an extremely low transfer rate results. If a decrease in the drawing efficiency is caused by texture
cache misses, enclose the polygon with markers M1 and M2, then check the write area and read area with the
video RAM viewer to determine the size and direction of the drawn polygon, as well as the access roughness,
direction, and color representing an access frequency of the texture area. Then, perform cause analysis as
described below.

(a) For one polygon, the texture area accessed for reads is extremely large.

This means that the texture data is too large to be held in the cache. When texture data is to be shared

by multiple polygons, the processing can be speeded up if the texture data can be held on the cache. As
described later, a decrease in processing speed, depending on the direction of rotation, of a polygon

can be avoided by reducing the size of the texture data, even when the data is used only once. Reduce

the sizes of the polygon and texture data, or use 4-bit texture data.

(b) For a small write area, a large texture read area is used.

This means that the texture resolution is too high. With the video RAM viewer, a texture area access

pattern is represented by thin horizontal parallel lines. Namely, when a texture cache miss occurs, 64-hit
texture cells arranged horizontally and extending to the right from the texture area are read, regardless of

the texture resolution. This read operation results in a thin horizontal line. Vertically, however, texture cells

are not read continuously, but are skipped. Thus, an access pattern like that described above results.

For correction, reduce the texture resolution. If the resolution varies over a wide range, use mip-mapping

or mip-modeling.

(c) The texture access area is long vertically. The texture read frequency is greater than the drawing
frequency.

If a texture cache miss occurs, texture cells are read horizontally as explained above. When a vertical bar
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is drawn, for example, not all of the read texture cells may be used. In such a case, a higher efficiency
may be achieved by placing the texture data horizontally.

With a rotating polygon, the texture read efficiency changes. A poor efficiency results particularly when
the texture read direction differs from the drawing direction by 90 degrees. In this case, when the
drawing section of a polygon is viewed using the video RAM viewer, the frequency of reading from the
texture area tends to be displayed in a color that represents a higher frequency than that of writing to the
drawing area. Several countermeasures can be applied. Divide the polygon so that the polygon data can
be held in the cache. Read from the texture area by rotating the texture pattern so as to ensure efficient
read access at all times. Or, provide multiple texture patterns to match the directions of rotation and to
switch between them.

(e) Detecting CLUT switching

Compared with an 8-bit texture, a 4-bit texture allows double the number of texture cells to be held in the texture
cache. However, a 4-bit texture supports only a limited number of colors, so frequent CLUT switching will often
be required. The “PlayStation” uses the Z sort method for drawing, such that CLUT control cannot be applied
explicitly. If CLUT switching occurs frequently with the same Z value, the time required for CLUT switching may
become so large that it can not be ignored. With the performance analyzer, CLUT reads, when displayed, are
colored by the video RAM bus analysis, enabling CLUT switching to be identified. If the texture resolution is high,
and texture cells are used on a skipping basis, many texture cells that are not used may be read even when an
attempt is made to improve the cache efficiency by using a 4-bit texture. If this occurs, the use of a 4-bit texture
does not speed up processing, compared with that possible with an 8-bit texture. If the penalty incurred by CLUT
switching cannot be ignored in such a case, the use of an 8-bit texture with an increased number of colors can
eliminate CLUT switching, thus speeding up drawing.

(f) Checking whether the resolution of the ordering table is too high
If the resolution of the ordering table is too high, an excessive number of null packets will be read, such that the
drawing efficiency decreases. Check this point carefully.

(g) Detecting transparent pixels

When a tree is to be drawn, for example, this can be done by creating a texture with a transparent color and
representing the tree with one quadrangle polygon. This method is not efficient, however, because the drawing
of a transparent color, including the reading of a transparent texture and the drawing of pixels, requires as much
time as the drawing of ordinary pixels. So, divide the object in such a way that the leaves are represented by
triangle polygons, and the trunk by thin rectangles, such that the transparent area is minimized.

(h) Detecting a GPU preprocessing bottleneck

GPU processing can be divided into two steps: preprocessing for converting packet data to parameters
required for the drawing engine internal to the GPU, and drawing processing. The time required for drawing
processing is roughly proportional to the drawing area. However, the preprocessing time depends not on the
drawing area, but on the type of the polygon. So, for a small polygon placed at the far end, most of the GPU
processing time is generally used for preprocessing. Thus, preprocessing tends to reduce the drawing
efficiency. In particular, when there are many small polygons with a Gouraud texture that require much
preprocessing, the drawing efficiency drops considerably. Using the performance analyzer, such a
preprocessing bottleneck can be detected by applying GPU packet analysis. A portion in which packets
requiring much preprocessing have high patterns involves many small polygons that tend to cause a
preprocessing bottleneck. If polygons that have small drawing areas and which require much preprocessing
need not be used, replace such polygons with other polygons that require relatively little preprocessing when
creating packets.

(i) Detecting polygons with no drawing area, back-face polygons, and polygons subject to GPU
clipping

A polygon that has no area requires longer preprocessing time than ordinary polygons do. So, before packets

are registered in the ordering table, the areas of the constituent polygons should be checked; this check also
serves to prevent useless polygons from being sent to the GPU.



Performance Analyzer Technical Manual
10

Check also whether there are any back-face polygons for which normal clipping is not performed.

The GPU can perform two-dimensional clipping by hardware. However, a polygon that reaches the left and
upper boundaries of the screen requires the same amount of processing time as when the polygon is not
clipped. If there are many such polygons, the drawing efficiency decreases. The performance analyzer displays
the distribution of these polygons by using polygon penalties.

To check for polygons with no area, an outer product value returned from the GTE function can be used. Note,
however, that when a quadrangle polygon is checked, the area of one of the two patrtial triangles is returned, and
a gap can result.

(i) Checking the time required to draw a background

Usually, a background is drawn by using sprites. However, a longer drawing time may be consumed by

duplicate drawing or drawing using polygons. Using video RAM bus analysis, check whether the time required to

draw a background is sufficiently short.

The typical flow of tuning using the performance analyzer is described above. This method may not be able to solve many
other problems, which may be associated with the use of libraries, or may be specific to individual programs. In such a
case, contact the development support section.

3. MEASUREMENT TECHNIQUES

With the performance analyzer, a V-blank interrupt serves as a reference point for measurement data. When a program with
one frame containing 2 V (two V-blank interrupts) or more is to be measured, the first reference point does not always
represent the start point of the main loop. To store data by matching a reference point with the start point of frame
processing, use one of the methods described below.

(a) Using synchronized data after repeated measurements

This is the simplest method. When a longer measurement time is to be set because of a low frame rate

that is caused, for example, by degraded processing, the probability of start point synchronization is

reduced. Accordingly, the measurement will have to be repeated. After measuring the data, stop the data

transfer before it ends. Then, display the results of main RAM bus and video RAM bus analysis for

100,000 cycles. At the start of a loop, a pattern for clearing the ordering table occurs on the main RAM

bus, and a pattern for clearing the background occurs on the video RAM bus. Continue to take these

measurements until these patterns are obtained. When these patterns are obtained, do not take a

measurement, but instead transfer data to obtain the entire data.

(b) Sampling for a longer period of time, then clipping and saving the required portion

Measure the section to be measured by doubling the number of V blanks, then clip and save the required

portion. With a program that has a low frame rate, however, a measurement section may be too large to

be held in the memory of the performance analyzer. Moreover, if measurement is repeated several times,

the data transfer time is doubled, thus resulting in reduced efficiency.

(c) Using the trigger function

The trigger function of the performance analyzer can be used. For example, GsDrawOt (executed after

VSync in the main loop) is used as a trigger address. After reading the symbol information, check the

main RAM access address item in the trigger setting dialog box, then select a function address to be

used as a trigger condition. An instruction cache miss must occur to enable the performance analyzer to

detect a selected address. When addresses are accessed in the main loop, however, one cache miss is

expected to occur for each frame, thus enabling synchronization to be established.

The above methods may not be suitable for measuring a phenomenon that occurs only rarely. For example, if the frame
rate drops in a rare case, the pinpoint measurement of such a phenomenon should be performed. For this purpose, use a
counter, for example, to find the time required to process the frame before calling VSync. Then, set up the processing such
that a particular global symbol in main RAM is accessed when the frame rate drops. Namely, modify the program as
follows:
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#define HCountThreshold 525 /* frame length in H count (needs an adjustment) */
volatile long ReqTrigger;
main()

{
%Br(;;){ /* main loop */

/* compare H-counts since the last VSync exited */
if(VSync(1) > HCountThreshold)

ReqTrigger = 0;

VSync(0);

}
}

Thus, frame rate drop can be measured by setting an access to the ReqTrigger variable as a trigger condition, and setting
NFV of the trigger condition to the number of V blanks applied to one frame.
By modifying a program as described above, a variety of phenomena can be measured using the trigger function.
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4. INTERPRETING MEASURED DATA

The following describes how to interpret the measured data.
Figure 1 Motortoon Grand Prix 2 (scene 1)
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Figure 2 Motortoon Grand Prix 2 (scene 2)

Figures 1 and 2 show the results of measuring the car racing game, Motortoon Grand Prix 2. This program employs the
double-buffer method, a standard “PlayStation” programming technique. Analysis indicate that the main RAM bus and

video RAM bus are accessed at the same time so that a CPU process and GPU process are performed concurrently. In
Figures 1 and 2, a 2V section is measured; the V blank positions are indicated by red lines on the upper ruler. (Figures 1 and
2 are based on NTSC. For PAL, these red lines are spaced further apart.) How to read the patterns numbered in Figures 1
and 2 is described below.
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a) Reading Analysis

(1) Start of a CPU process

Figure 3 V-blank interrupt

A CPU process starts when the VSync function ends in the program. The measurement data first indicates an
interrupt routine caused by a V-blank interrupt. In Figure 3, the starting portion is enlarged. As can be seen from
Figure 3, about 20,000 clock cycles are required for interrupt routine processing, after which the user program is
executed. In Figure 1, this point acts as the start point of a CPU process. (This means that symbol main is the first
point to be accessed.)

(2) End of a CPU process (detection of VSync wait state)

The end of a CPU process is not detected automatically. However, the end point can be obtained by finding a
stable read/write pattern that appears at the end of the processing. This is enabled by the VSync function polling
the variables set by the interrupt routine. Such a stable pattern often represents loop processing. The end of a
CPU process corresponds to the start of a pattern of the VSync function. Usually, the VSync function operates
on the cache, so that no red pattern, representing a cache miss, appears.

( 3) Start of a GPU process (drawing)
The start of drawing is represented by the first access revealed by video RAM bus analysis.

(4) End of a GPU process (drawing)
The end of drawing is represented by the last access revealed by video RAM bus analysis.

( 5) Clearing of the ordering table
The ordering table is cleared using a function such as ClearOT. The DMA controller in the CPU chip writes a long
word to main RAM in each clock cycle. Thus, a high peak appears in the first half of the processing.

( 6) Instruction cache miss
A burst read from memory, caused by an instruction cache miss, is indicated by a red pattern.

( 7) On-cache pattern
If the program causes no instruction cache miss, no red pattern is displayed, as indicated here. In this case, the
CPU operates efficiently without stalling.
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( 8) Interrupt

Usually, an interrupt is a V-blank interrupt. Other types of interrupts, such as sound interrupts and timer interrupts,
can be generated. When an interrupt is generated, an instruction cache miss occurs and a red spike-like pattern
is produced, as indicated here. If such an interrupt is generated frequently, the main task processing is impeded.
So, be careful if such a pattern is detected frequently.

(9) GPU packet read

The GPU usually reads packets from main RAM by means of DMA transfer. This pattern is represented in pink.
When more data is transferred, a thicker pattern results. Thus, main RAM bus access by the CPU is impeded,
causing the CPU to stall.

(10) Null packet

A null packet is a packet for which there is no entry on the ordering table. If null packets occur in succession, no
drawing packet is transferred to the GPU, such that drawing is delayed accordingly. GPU packet analysis uses a
white pattern to represent null packets. Null packets appearing in succession not only delay drawing by the GPU,
but also cause frequent useless GPU packet reads, as can be seen from a main RAM bus analysis; thus, the
availability of the main RAM bus becomes very low.

(11) Ordering table resolution

A white pattern mixed with polygon packets like this indicates reduced drawing efficiency, caused by the ordering
table resolution being too high. By means of video RAM bus analysis, enlarge and check this portion to
determine the adverse effect of high resolution on the processing.

(12) Background drawing (texture mapping)
Figure 4 Background section specification
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Figure 5 Background drawing

To determine a background boundary, enclose the first pattern in the video RAM bus analysis with the M1 and
M2 markers as shown in Figure 4. Then, obtain the drawing area by executing the video RAM viewer command,
as shown in Figure 5, and check that a background is drawn. An access frequency is represented by a color,
enabling a doubly drawn area to be detected. If the resolution of the texture is too high in background drawing,
video RAM bus analysis indicates texture reads in red and a lower write pattern in green. If background drawing
takes a long time, tuning should take this point into consideration.

(13) Pattern exhibiting low drawing efficiency
A low green pattern like that in this portion represents a low drawing transfer rate. For troubleshooting, enlarge
such a portion.

(14) Pattern exhibiting a high drawing efficiency

Efficient drawing is indicated by a pattern like this. No texture reads or CLUT reads are performed. Moreover, the
time required for polygon preprocessing can be ignored, relative to the drawing time, and a high green write
pattern is indicated. In polygon drawing, the pattern height can increase by up to 50%.

(15) Semi-transparent polygon
A semi-transparent polygon is represented by a navy blue pattern. Note that the drawing of a semi-transparent
polygon takes three times longer than an ordinary write.
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(16) When a GPU process is longer than a CPU process

Figure 6 When a GPU process is longer than a CPU process

Figure 6 shows a GPU process that ends after a CPU process ends. As shown in Figure 6, even when the CPU

is performing loop processing in the VSync function, GPU packets are read on the main RAM bus. So, the

VSync wait pattern does not appear in a stable manner when compared with Figure 1. In this case, however, the

CPU has ended its processing. Moreover, it can be observed that an interrupt for drawing termination was

generated upon the completion of drawing, and a spike pattern representing an instruction cache miss due to

interrupt handling occurred on the main RAM bus.

Next, an example of measuring a streaming program is shown in Figure 7. Each numbered pattern is explained below.
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Figure 7 Streaming

(17) DMA transfer from the CD to main RAM

A pattern like this occurs when data is transferred from the CD to main RAM. A high pattern is displayed.
However, main RAM bus analysis indicates the period during which the main RAM bus is occupied. This means
that data is not always transferred in each cycle. Data transfer from the CD occupies the main RAM bus for a
long time although the amount of data is not large. If the CPU attempts to access the main RAM bus while data is
being transferred from the CD, the CPU will stall for a long time.

(18) CD read

The CD device is connected to the sub-bus, another bus used by peripheral devices. So, CD reads are
displayed by a sub-bus analysis like this.

Figure 8 shows an enlargement of part of the streaming. The patterns described below are observed.
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Figure 8 Streaming (enlarged)

(19) Transfer from main RAM to MDEC
Data transfer from main RAM to MDEC is represented by an orange pattern. Usually, compressed data is
transferred.

(20) Transfer from MDEC to main RAM

Transfer from MDEC to main RAM is regarded as an internal DMA write transfer, so that a dark green pattern
appears in the same way as when clearing the ordering table. MDEC expands data, such that data transferred
from MDEC to main RAM is decompressed image data.
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b) MEASUREMENT OF A TOTAL STATISTICAL AMOUNT

Figure 9 Statistical information (CPU process)

Statistical information can be obtained by placing markers M1 and M2 at the start and end points of a CPU process,
respectively. Figure 9 shows the statistical information thus obtained, which includes the estimated number of CPU stall
cycles for the program. By referring to that value, determine the type of tuning required. If the desired processing speed
cannot be obtained even after the total number of CPU stall cycles is reduced, another solution should be found by
determining which processing is overloaded.

Next, place markers M1 and M2 at the start and end points of a GPU process, respectively, then measure the statistical
amounts in the same way (Figure 10). Information displayed here shows the number of polygons and sprites which the GPU
processed. Such information can also be used to check whether the number of polygons to be displayed is adequate.
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Figure 10 Statistical information (GPU process)

c) DETAILS OF ANALYSIS
The methods of analysis are detailed below.

(a) Detection of the Instruction Cache Miss Function
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Figure 11 zimen\tuto5.cpe

Figure 11 shows the results of measuring the sample program, psx\sample\graphics\zimen\tuto5.cpe, provided
on the library CD-ROM. A 1V section measurement is made, and a main RAM bus analysis indicates a cache
miss, in red, in the first half. We can determine the function that caused this cache miss. First, position the cursor
to the area where the cache miss occurred, and enlarge that area. Then, the patterns shown in Figure 12 are
obtained.

Figure 12 zimen\tuto5.cpe (instruction cache miss portion enlarged)

These patterns appear cyclically. From the clock cycle values indicated on the ruler, the period is found to be
about 700 cycles. As this period is shorter, and these patterns represent a greater proportion of the overall
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processing, a greater improvement can be expected despite the application of less tuning. Here, enclose several
cyclic patterns, regarded as representing loop processing, with markers M1 and M2. Then, read the mapping
information, and display only those global symbols that are accessed in the section by selecting filtering from the
menu. (Figure 12 already indicates these global symbols.) Next, enable global symbol access display.
Furthermore, with the option menu, reset the scale factor specification for global symbol access display to enable
display using the current scale factor.

Then, the global symbols accessed in the M1-M2 section are displayed as shown in Figure 12. Those functions
that caused instruction cache misses are displayed in red. We can determine which functions caused a
particularly large number of instruction cache misses. Figures 13 and 14 show the data dumped by positioning
the cursor to each function and double-clicking.

Figure 13 Function that encountered an instruction cache miss (1)
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Figure 14 Function that encountered an instruction cache miss (2)

The size of the “PlayStation™s instruction cache is 4KB. The cache line size is 4 long words, and 256 cache lines
are allowed. As shown in Figure 13, the lower two digits next to the lowest digit of a main RAM bus address
represent the line number. This means that a cache miss is caused by instructions that are located at different
addresses but which have the same lower two digits. There are several methods of eliminating such a cache
miss. Use inline expansion or DMPSX, or link those functions to locate the functions at addresses close to each
other if the functions are user functions. Note, however, that a cache miss is unavoidable if the loop includes
code of 4KB or more. One speedup technique for the “PlayStation” involves ensuring that no small loop includes
a code of 4KB or more.

Next, position M1 and M2 to cover the section including all the patterns for loop processing involving a cache
miss, then collect the statistical information for the section (Figure 15).
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Figure 15 Statistical information of a portion where an instruction cache miss occurred

The CPU stall time caused by an instruction cache miss corresponds to about half of the red indication provided
by main RAM bus analysis. Here, the CPU stall time is represented by the number of clock cycles. If cache
misses can be eliminated from this section, processing can be speeded up by the corresponding number of
clock cycles.

(b) Detection of Duplicate Data Reads

A CPU data read cycle on the main RAM bus is indicated as a yellow pattern by main RAM bus analysis. The
CPU stall time corresponds to the total yellow area. Data such as global symbols may be read from main RAM,
but a work area and temporary variables should be accessed using, for example, the scratch pad. If main RAM
must still be accessed, tuning can be achieved by checking whether there is a duplicate read, that is, by
checking whether there is an access for reading from the same address more than once without writing. In
Figure 11, such a duplicate read is indicated by the read/write penalty "duplicate read." A red area represents a
duplicate read, or CPU stall time. Figure 16 shows an enlarged view of a portion that includes many read
patterns. Here, position the cursor to a red pattern, then double-click to dump the data (Figure 17).

Figure 16 Duplicate read of data from main RAM (read/write penalty)
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Figure 17 Duplicate read of data from main RAM (data dump 1)

Next, by using the search command, identify an address that is accessed more than once. Figure 18 shows the
dumped data.

Figure 18 Duplicate data read from main RAM (data dump 2)

The reason for such a duplicate read is described in Flow of Diagnosis. The code should be modified,
depending on the cause, to eliminate duplicate reads whenever possible.

A byte access or short-word access is handled as a long-word access on the main RAM bus. This means that,
even when a read access which is not duplicated is coded, the performance analyzer may indicate the access
as a duplicate read.
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The CPU stall time for one read access is four cycles. So, if a code for using the scratch pad or a register to
avoid access to main RAM is shorter than the number of duplicate accesses multiplied by four instructions, the
use of such code will speed up processing.

A duplicate global symbol read can be identified from global symbol access and data dumping. However,
access to a stack area requires some care. Namely, when a symbol file is read without first setting a stack area
using the performance analyzer, an access to a stack area is mistakenly indicated as a highest-level access to a
global symbol. In such a case, an access to a stack causes an extremely high offset value for a particular global
variable.

(c) Detection of a Write Buffer Flush Penalty

In Figure 11, a write buffer analysis indicates a portion where a device such as the CPU may stall because an
access request is generated while the write buffer is being flushed. The area represents the stall time. For tuning,
the portion where many red patterns are visible should be carefully checked.

Figure 19 Enlargement of a portion including a write buffer flush penalty

Figure 19 shows an enlarged view of the portion; at the cursor position, a CPU read access occurred
immediately after a write access. Figure 20 shows the data dump, displayed by double-clicking.
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Figure 20 Write buffer flush penalty (data dump)

Check the code. If a store instruction is immediately followed by a load instruction, reduce the stall time by
inserting another instruction between the two instructions or by exchanging the two instructions with each other,

if possible. Particularly, when a read and write occur alternately and repeatedly, a longer stall time results. In such
a case, take advantage of the four stages of the write buffer. That is, the stall time can be dramatically reduced

by modifying the code so that four writes occur in succession. When 100,000 polygons are to be displayed per
second, for example, the length of a loop for processing one polygon will be about 200 to 300 cycles. If a stall
time of 10 cycles is reduced by tuning the write buffer, an improvement of 3% to 5% is achieved. This means that
the number of polygons to be displayed can be increased by such an improvement. Note that, even if an
instruction other than a store instruction is executed immediately after flushing, a write buffer access causes a red
pattern when a read access occurs immediately after on the main RAM bus. Patterns do not always represent
penalties.

(d) Detection of Null Packets

As shown by the GPU packet analysis in Figure 1, a null packet is represented by a white pattern. White patterns
occurring in succession represent successive null packets in the ordering table. Successive null packets can be
eliminated using multiple ordering tables, for example.

An enlarged view of a null packet indicates that the drawing is delayed accordingly, as shown in Figure 21.
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Figure 21 Null packet detection

If null packets are mixed with other polygon packets, the drawing efficiency may have decreased because the
resolution of the ordering table is too high. If video RAM bus analysis indicates that the green pattern is low, the
problem may be solved by lowering the resolution.

(e) Detection of Inefficient Texture Cell Reads
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Figure 22 Drawing efficiency check
As shown in Figure 22, position markers M1 and M2 to a portion with fewer green patterns on the video RAM
bus, and enlarge the enclosed portion. In this case, the pattern shown in Figure 23 is obtained.
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Figure 23 Portion containing more texture cache misses
Next, position markers M1 and M2 to that portion having more green patterns, and enlarge the portion. In this
case, the pattern shown in Figure 24 is obtained.
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Figure 24 Portion containing fewer texture cache misses

The two red stripes produced by video RAM bus analysis represent a 64-bit texture read. For texture read, the
texture cells corresponding to the line size of the texture cache are read from video RAM if a texture cache miss
occurs; the texture cells read at one time are always 64 bits long.

Figure 25 shows an enlarged view of a portion for which the drawing efficiency is high. When such a portion is
checked with the video RAM viewer, a pattern like that shown in Figure 26 is obtained. On the other hand, when
a portion for which the drawing efficiency is poor is enlarged, as shown in Figure 27, and is checked with the
video RAM viewer, a pattern like that as shown in Figure 28 is obtained.
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Figure 25 Portion of a high drawing efficiency (video RAM bus analysis)
Figure 26 Portion having a high drawing efficiency (video RAM viewer)
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Figure 27 Portion having a low drawing efficiency (video RAM bus analysis)

Figure 28 Portion having a low drawing efficiency (video RAM viewer)

In a texture cache line fill, horizontally successive texture cells of the texture area are read. So, if the resolution of
the texture is too high, and 4-bit texture mode is used, for example, 15 out of 16 texture cells may be discarded,
and only one pixel may be drawn. An example is shown in Figure 23. In this example, only one pixel is drawn for
each texture read caused by a texture cache miss. When Figure 26 is compared with Figure 28, it can be seen
that more texture reads are performed in Figure 28.

A similar phenomenon occurs when a texture larger than the texture cache is used, and when a polygon to be
drawn is rotated through 90 degrees relative to the texture pattern. Each cause can be identified from read
access and write access patterns with the video RAM viewer. Apply appropriate action such as changing the
texture size and texture resolution, depending on the identified cause.

Figures 29 and 30 show the improvement realized for the sample program,
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psx\sample\graphics\mipmap\tuto5.cpe, made by mip-mapping. These figures reveal that a significant
improvement in drawing speed can be achieved by applying mip-mapping.
Figure 29 Sample program (without mip-mapping)
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Figure 30 Sample program (with mip-mapping)
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(f) Detection of Transparent Colors

Figure 31 A polygon including transparent colors

Based on GPU packet analysis, Figure 31 shows an enlarged view of a section containing no accesses. From
the GPU packet analysis, the drawing of one large polygon is assumed. Video RAM bus analysis indicates that
the texture is read constantly, but that drawing is not performed in many portions. Figure 32 shows the
information obtained with the video RAM viewer by positioning M1 and M2 such that they enclose the drawing
section of a polygon.
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Figure 32 A polygon including transparent colors (video RAM viewer)

Usually, with the video RAM viewer, the left side represents the frame buffer, while the right side represents the
texture area. When the double-buffer method is used, the frame area is divided into an upper area and lower
area; each time the frame is switched, the access area is switched. Figure 32 shows that a transparent color is
used in the frame buffer area. Thus, a polygon causing a problem can be identified using the video RAM viewer.
A polygon with large transparent area should be divided to reduce the size of transparent area.
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(g) CLUT Switching

Figure 33 CLUT switching and polygons requiring considerable preprocessing

Another example having poor drawing efficiency is shown in Figure 33. A video RAM bus analysis shows that an
orange pattern representing a 4-bit CLUT read occurs with each polygon. This means that many polygons use
different CLUTs with close Z values. If the video RAM bus is occupied because of frequent switching between
CLUTSs, action is required.

(h) Bottleneck

The GPU packet analysis shown in Figure 33 indicates that a Gouraud texture polygon is drawn. A video RAM
bus analysis indicates that a relatively large portion involving no accesses precedes texture read or pixel drawing.
This means that a long time is required for Gouraud texture preprocessing. To speed up the processing, those
small polygons that require considerable preprocessing should not be drawn wherever possible.



Performance Analyzer Technical Manual
40

(i) Polygon Penalties

Figure 34 Polygon penalties

Figure 34 evaluates and indicates the penalties of zero-area polygons, polygons with a poor scissoring
efficiency, polygons clipped by the GPU, and back-face polygons subject to normal clipping. To improve the
processing, cause the CPU to perform normal clipping, area checking, polygon division, and area clipping for
these polygons, if the CPU has enough processing time left to do them.

The performance analyzer identifies back-face polygons checking the order of vertices in a polygon packet.
Some programs may assume such an order is for front-face polygons, or may assume any kind of order is for
valid polygons which should be drawn. In such cases set the parameter in options dialog box to display correct
polygon penalties.

Also the offset value and the screen size should be set in options dialog box to display correct polygon penalties.



