
* Z-buffering example *

(c) Sony Computer Entertainment Europe
Introduction

This example performs Z-buffering on PSX. It consists of an assembly program
which does the actual Z-buffering, and a C program that sets things up and
does the controls and calls the drawing routines.

How it's done

The Z-buffering is carried out as follows:
Each poly is taken in turn, then for the area covered on screen by the
bounding rectangle of the polygon the max and min z values are taken. If the
three vertices of the polygon have a lower z than the min z value for the
area then the polygon is drawn. If the three vertices have a larger z than
the max z then the polygon is not drawn. If neither of these is the case the
polygon is split in two and each of these polygons checked.

When a polygon is split some information is added to the stack, which in
extreame cases may become large, however some reducing of the number added
is done. If the poly has any area it is split into two, one of which
overwrites the original poly, and the other is placed on the stack. To help
reduce the amount of stack space used, checks are carried out to ignore any
polys that have no area. This means it may be the case that one poly
overwrites the original and nothing is added to the stack.

Drawing the scene

The scene is made up of a background and model. The whole thing runs in
hi-res 640x480 interlaced. For the sake of speed the Z-buffer itself is only
320x240, thus making one Z value for four pixels.

The calculation of the Z-buffered polygons is separate from the drawing to
allow the screen to be in interlaced mode, even though the calculation
may take more than one frame (depending on the model, distance and Z values
it can take six or more frames of calculation).

The background has been split into DR_LOAD chunks to allow the odd and even
fields to be updated individually. Further to this only the lines altered
by the drawing of the model are refreshed, thus saving more time.

The scene is also triple buffered allowing there to be one calculated, one
being drawn and the next buffer to calulated at once. Without this there is a
delay when one is calculated and one is being drawn to wait for the drawing
to finish before the next calculation starts. Triple buffering means that
there is no delay waiting for a screen to be drawn before the next lot of
calculations are started.

Although theres a field for OT position, because the model is drawn semi
transparent there is no need to use it. This saves a little time as no
calculation of OT values is needed before the model is Z-buffered.

Limitations and alterations

Presently the code is set up to accept a model that is made up of only flat
textured triangles. The triangle part cannot be changed in the Z-buffer

 Page 1

code, however quads can easily be split as the model is loaded.

In the assembly code there are some offsets. The pt offsets correspond to
POLY_FT3 plus additional information for ot value and z values which are
stored to stack when one of the polygons is split into two. The p offsets
correspond to the POLY structure used in the C code.

To change the polygon type all that is needed is to change the info in the
POLY structure (and therefore the p offsets in the assembly) and the pt
offsets to match up with the new poly type. Then the information saved when
either the a poly is added to the ot, saved or loaded from the stack needs to
be changed. A further complication with Gouraud polygons is the subdividing
of the colour information, which can be added to the section of assembly code
dealing with vertex subdivision.

Parameters to the assembly routine

The function takes 5 parameters:
A pointer the polygons to be manipulated
A pointer to the Z-buffer
A pointer ot the ordering table
A pointer where the polys are to be stored for drawing
The number of polygons sent to the routine

 Page 2

