
Page 1 of 21

[Welcome | What's New? | Installation | Technical Support]
[Overview of Tools on CD | Index of Tools on CD | Samples]

This CD contains over 140 samples. The majority were written by Sony Computer Entertainment
(Japan), and demonstrate officially accepted methods of calling program API's and initializing
structures. If you are curious about the "garbage" text in the comments of the sample code, don't
worry: these are Japanese comments that have a corresponding English translation provided beside it.
The remaining samples were contributed by members of SCEE, SCEA, and generous developers. If
you would like to donate some code for inclusion on the next Programmer Tools CD, refer to the
section below entitled Can I contribute my own samples?.

Many of the samples can be run directly from the Programmer Tools CD-ROM from your
development system's CD-ROM drive; read the section below on Running the Samples from the CD.

What Samples are Available?

A text only listing of the samples, along with a brief description, appears \psx\smplst.txt. Note that
the text only lists samples which are officially provided by SCE Japan.

More samples, contributed by members of SCEA and SCEE, are listed in the document you are
currently reading. In addition, we've added some caveats, warnings, and hyperlinks. Have a look at
the categories below:

• CD related samples Examples that demonstrate how to stream the audio and video data from
the movies and audio tracks on the Programmer Tools CD.

• Scratch pad sample. A small sample showing how to access the D-Cache, which is an
extremely fast 1 Kbyte cache.

• Thread sample. A small sample illustrating how to use threads.
• Controller samples. Code shows you how to interface with the analog controller, light gun,

mouse, multitap, and the serial link cable (combat cable).
• Kanji samples. If you're developing for the Japanese market, you will find the code here handy.
• Sound samples. XA audio, streaming, MIDI sequenced files.
• Graphics Samples. The whole spectrum of manipulating 2D and 3D graphics is presented

here: HMD , sprites, manipulating 3D modeling data (in PlayStation TMD format),
drawing polygons on the screen, and moving your virtual camera around.

Page 2 of 21

• Memory Card Samples. Don't forget about these samples for the memory card; they illustrate
how to read and write to the card, and even make the card act like a security dongle.

• Module and menu samples. These samples demonstrate how PlayStation programs can launch
other PlayStation programs. If you need to have a menu launcher, or you want to partition your
game in modules, use the examples here. These show you how to run overlays, or execute
programs using "LoadExec()".

• MPEG decompression. These samples demonstrate which parameters you need to toggle in
order to make your MPEG compressed video looks its best.

• SCEA samples. Miscellaneous contributed samples obtained from SCEA and North American
developers. Other contributed sample are listed in the relevant categories. Contains an
example of using the PC file system.

• SCEE samples. Miscellaneous contributed samples obtained from SCEE and European
developers. Other contributed sample are listed in the relevant categories. Contains the
European demo disc, a profiler, a PAL example, and others.

• Serial Cable samples. On the blue debugging PlayStation, a serial port can be used to
communicate with the serial port of an IBM PC-AT compatible, via the DTL-S3050 cable.

This huge number of samples is overwhelming, especially if you are new to PlayStation
programming. I would suggest that you start with the "tuto" directories of the categories, if they exist.
They contain basic programs, which are nevertheless pretty advanced for a newbie. Use the debugger
"dbugpsx.exe" to step through the code.

In order to learn anything, you really need to install the (included) Adobe Acrobat Reader 3.0 (or
later) and have the Technical Reference CDROM sitting in your CD-ROM drive. You will
constantly need to use the Reader's searching capabilities to help track down the function definitions
(in the Library Reference manual) and the general concepts (in the Library Overview manual). For a
simple tutorial on using Adobe Acrobat, click here.

About the contributed samples

A note about the contributed samples. While the samples have been attributed to various authors, it's
well known that authors borrow code from other programmers too. So many names are left unlisted
in this document, but we salute you all. In addition, some of the older samples may not work for you,
being based on old libraries, or on data files that we don't have. Therefore, please use them at your
own risk, and contact the authors if you have problems.

Can I contribute my own samples ?

Yes, please send them to us! Refer to the document \psx\sample\contrib\readme.txt for information
on contributing your samples. That document also refers to \psx\sample\contrib\agree.pdf which will
be worked out with your publisher's lawyers to allow your source code to be posted (you don't have
to deal with this document yourself, but it's provided for your curiosity. Please note that this
document is needed to enable us to publish your code without suffering from accusations that we've
stolen the code unlawfully!)

To Install the Samples:

• If you're running under Windows 95, launch the "setup.exe" available on this CDROM.
• Or, simply copy the samples from the Programmer Tools CD into your root PlayStation

Page 3 of 21

development directory, such as "c:\ps\psx\samples". Make sure you maintain the the directory
structure of the Programmer Tools CDROM. In the future, we may add HTML readme's to the
contents of the directories themselves, and this will rely on hard-coded relative path-names.

To Run the Samples:

Note that most of the samples are precompiled. To view the samples, you have two options:

• Running (almost) all of the samples all at once. If you just want to run the samples on your
development board, there is a program in \psx\sample\module\menu that allows you to do this.
For a simple set of instructions read the section below on Running the Samples from the CD.

• Running samples individually. For a discussion on how to compile and run the samples,
click here.

What's changed?

The official text-only listing of the changes is in the document \psx\smpchg.txt. In addition, this
document contains a full listing of the samples . Items tagged with are new to this release
relative to the previous release of the programmer tools CD.

Running the Samples from the CD

In the past, developers have wanted to run all of the samples directly from the Programmer Tools
CD. It's possible to do something like that by using the CD in conjunction with your development
boards, their associated CD-ROM drives (DTL-H2010 or DTL-H2510), and your PC's hard drive.
Rather than running the samples from your CD-ROM, you copy the .exe files (in the procedure listed
below) to your hard-drive, and run them from there. Here's what you need to do:

1. Make sure your development system is up and can run at least one of the samples.
2. Make sure the CD-ROM drive is hooked up to your development board.
3. Copy the directory \psx directly from the CD-ROM to the root directory of your hard-drive. It's

very important that you place this in the root directory, since a script expects it to be there. If
you are low on drive space, you can remove the "lib" and "include" directories. The whole
"psx" hierarchy consumes about 90 Megabytes.

4. Put the Programmer Tools CD into the CD-ROM drive (the DTL-H2010 or the DTL-H2510,
not your computer's CD-ROM drive). Some of the sample programs will access the CD-DA
tracks, the XA tracks, or the movie streaming data (in the \Xdata directory).

5. Tell the development board to select the CD-ROM drive by typing the following command
(assuming that you set up your binaries in c:\ps\pssn\bin): "run c:\ps\pssn\bin\selcd.cpe". (If
you don't know where your "selcd.exe" file is, run the "find" utility under Windows 95, or
change to the root directory of your hard drive and type "dir /s /b selcd.cpe" at an MS-DOS
prompt.)

6. Change to the directory \psx\sample\module\menu: type "cd c:\psx\sample\module\menu".
7. Reset the development board: "resetps 1", and (if you're running on a DTL-H2000), "run

c:\ps\pssn\bin\snpatch.cpe".
8. Run the program "pcmenu.cpe" by typing the command "run pcmenu.cpe" at an MS-DOS

prompt. If everything's working correctly, you should see a colorful screen.

Page 4 of 21

9. Run the program "mess1.com" (in the same MS-DOS command window) so that you can see
the printed message. Then type "testmess".

10.Use your controller's up and down pads to navigate through the directories. You may see a
Japanese description of the program; hit the "SELECT" button to switch to the English
translation. To run a program, hit the "START" button, and the child program will start. To
exit the child program, hit the "SELECT" and "START" buttons simultaneously.
(Unfortunately, not all of the samples follow this exiting rule, and are so noted in the
descriptions below. In addition, you can simply read the "readme.txt" in the particular sample's
directory to get more instructions on running the sample).

You can read all about the menu utility in the document \psx\sample\module\menu\readme.txt. This
utility does not demonstrate the capabilities of the samples in \psx\sample\scea or
\psx\sample\scee.

How it works: This program works by installing itself in the upper 5 Megabytes of the Development
Board's memory. The child sample programs, and their data are loaded within the first megabyte (or
so) of memory, and then the function Exec(...) is called. Due to the memory placement, the main
executable has no danger of being overwritten, and it can keep track of the menu status.
Theoretically, it could be possible to rewrite the programs so that the Programmer Tools CD could
be made into a commercial black PlayStation bootable CD. However, the PlayStation has only 2
Megabytes of RAM, and there are over 140 samples being produced, changed, and constantly
updated, so in practice this is quite difficult to manage. In addition, the samples are accessed using
the PC-File system. Now in theory, you should be able to run the samples directly from the
CD-ROM, but due to the excessive size of the file hiearchy on the Programmer Tools CD-ROM
(with over 3500 files and 377 folders), "CdSearchFile" doesn't work correctly. Work arounds are
possible (refer to Ben Fawcett's article on CCS2POS on the Technical Reference CD), but frankly --
we're running out of time. So for now, we hope you like this solution.

To see an abbreviated version of this program for use in your own games, refer to
\psx\sample\module\execmenu\readme.txt

Page 5 of 21

How do I run these samples? The data for these movie samples is stored in the "\Xdata" directory
on this CDROM, which needs to be placed in the DTL-H2010 or the DTL-H2510 prior to executing
the samples. Alternatively, you can place the data onto the hard drive of your CD-Emulator. Follow
the instructions for running CD samples here.

Warning: With the release of libds in Library 4.0, libds.lib will be required for the operation of
libcd.lib. Make sure that libds.lib is linked, even if you do not plan to use it. This measure has been
taken care of for psyq.ini. As noted below, the new sample directory \psx\sample\ds illustrates how
to use the new ds functions.

Directory: \psx\sample\cd\earth
This example streams movie data from the CDROM and places it on a spherical surface using
RotPMD functions.

Directory: \psx\sample\cd\movie

• tuto0 Simple streaming program. Time-out retry feature was added to the movie play sample
program. This feature restarts playing the movie data picking up where it was left off in case it
is halted due to, for example, opening a PS cover by causing strNext() to time-out.

• tuto1: Allows variable screen resolution.
• tuto2: Added memory streaming to tuto0.c
• tuto3: Same as tuto0.c but avoids frame skipping.

Directory:\psx\sample\cd\str3d.
Sample of the combination of moving pictures with streaming and 3D model display. Spreading
loads of animation with DecDCTvlcSize()

Directory:\psx\sample\cd\tuto.
CD-ROM tutorials exercising the functions available in the library libcd.lib:

• tuto0: simplest CD-Player (polling type)
• tuto1: simplest CD-Player (interrupt type)
• tuto2: auto repeat play among 2 points of CD-DA
• tuto3: auto repeat play using CdlDataEnd
• tuto4: fast operation using CdControlF
• tuto5: auto repeat play among 2 point of CD-XA.
• tuto6: interleaved audio/data channel
• tuto7: background CD read
• tuto8: multi file CdRead
• tuto9: load and execute programs
• tuto10: high level CD-ROM file access
• tuto11: test CD type

Directory:\psx\sample\ds\tuto.
A simple tutorial for using libds.lib, consisting of the following tutorials:

• tuto0 - tuto11. These are the rewritten libcd tutorial for libds.lib. Since the structure of the
program has been kept as in tact as possible, these are not necessarily the most appropriate
methods for libds.lib, but by comparing these with the tutorial of libcd, you should be able to
grasp the characteristics of libds.

Page 6 of 21

• tuto12: The sample for the comparison of the time required until the playing of the music for
the cases of using forward seek to play DA and not.

• tuto13: The sample for the comparison of the time required until the playing of the music for
the cases of using forward seek to play XA and not.

• tuto14: The sample of comparison of the time required for continuous reading of multiple files
(sequential recording on the CD and reading without seeking individual file at a time, but
rather, continuously read in recorded sequence) and seeking and reading individual files at a
time.

For more information, you can read this readme and similar topics on the Technical Reference
CDROM. June 1997

Directory: \psx\sample\scea\cdemu
A basic tutorial on using the CD-Emulator and burning a gold disk, from start to finish. Contributed
by Chia-Ming Wang, Nov. 1997

Directory: \psx\sample\scee\cd\cdplayer
Makes your PlayStation into a CD-Player. When you put a music CD into your DTL-H2010 or
DTL-H2510, you can play the tracks. Contributed by members of SCEE Dave Virapen, Allan
Murphy, and others December 1995

Directory: \psx\sample\scee\cd\movie2
A simple movie player module with the following features:

• Plays movies at 24 or 16 bit at any horizontal screen resolution.
• Pre-processing stage to find the maximum VLC buffer size.
• Well defined interface and self contained module that can be easily included into your

program without too many problems.
• Efficient use of memory.
• Lots of error checking.

Contributed by Vince Diesi, June 1997.

Directory: \psx\sample\scea\cd\xaplayer
Shows how to use interleaved XA streams to store a large number of dialog lines and how to play
them back nearly instantly. Unfortunately, we did not get the PACK1.XA and PACK2.XA files for
Programmer Tools CD-ROM release 2.0. Contributed by Buzz Burrowes, Sony Interactive Studios
AmericaOctober 1995

Directory: \psx\sample\scee\demodisc
Source code hook for usage in the Demo cd used by the European developers. Please contact SCEE
for more information on this. USA developers can SCEA, and we will forward your requests to
SCEE. Contributed by Allan J Murphy, Paul Holman, Vince Diesi, Richard Milner February
1997

Directory: \psx\sample\module\cdexec
A module for executing PSX.EXE on a CD-ROM/CD-Emulator with DTL-H2000

Scratch pad sample

Page 7 of 21

Directory: \psx\sample\cmplr\scratch
Sample demonstrating use of the scratch pad area. Data is placed on the scratch pad area, and the
difference of the processing speed can be seen with three different access methods.

Warning: Before you compile this program, you must edit the file "main.lnk" to match your
environment in order to let the compiler know about "spad" group. Read the file
psx\sample\cmplr\scratch\readme.txt for more information.

These samples demonstrate how to use the combat cable, lightgun, multitap, and others.

Directory: \psx\sample\control\mouse\
A mouse control sample that can process cursor-movement and mouse clicks.

Directory: \psx\sample\serial\comb\
Samples for the combat cable:

• tuto1. Sample for synchronous communication.
• tuto2. Sample for synchronous write and asynchronous read.
• tuto3. Sample for asynchronous write and asynchronous read.

Note This sample program is for versions 3.7 libcomb and later, and will not run with any previous
versions of libcomb. Sample programs for version 3.6 and earlier versions of libcomb will not run
with Version 3.7 libcomb.

Directory: \psx\sample\control\gun
Sample program for gun controller. When gun controller is attached to the PlayStation and the
trigger is pulled, the position where the gun controller is facing is displayed on the screen. Note:
DTL-H2500 users may have had problems running the light gun samples in the past. Place the new
sn.bin (075) in the directory \pssn\bin, and while in the directory, run the program "pflash.bat". This
will fix the problem.

Directory:\psx\sample\control\mouse
Sample to process cursor-movements and clicking with a mouse

Directory: \psx\sample\serial\sio

• tuto1. SIO driver sample to connect the debugging station with PC via H3050 and echo-back
input from PC using standard I/O drivers, and callback is implemented by a receive interrupt.

• tuto2. SIO driver sample to connect the debugging station with PC via H3050 and echo-back
input from PC without using standard I/O drivers, and callback is implemented by a receive
interrupt.

Directory: \psx\sample\control\tap
Multi tap sample

Page 8 of 21

Directory: \psx\sample\scea\cntrl
Controller demonstration demonstrating the controller API. Sprites are generated according to the
controllers attached, such as a pad-sprite if a pad controller is being used, or a gun-sprite if a
light-gun controller is in use. Written by Mike Fulton of SCEA.

Directory: \psx\sample\scee\etc\mtap
Multitap example from the European Developers conference, 1996. Shows you you how to read data
from the multitap. Please contact SCEE for more information on this. USA developers can contact
SCEA, and we will forward your requests to SCEE

Directory: \psx\sample\scee\etc\control
This is a general peripheral tester that demonstrates the use of

• The Standard Controller.
• The Mouse.
• The NegCon.
• The Analog JoyStick.
• The New Analog Controller.
• The Multi Tap.

Note that the MultiTap only gives the buffer readout. To run the code correctly just type runit.bat.
This will cause some pqbloads of the tims. Contributed by Kevin Thompson at SCEE June 1997

Directory: \psx\sample\scee\etc\gun
This is a peice of code to show the use of the Konami Gun and the Gcon.45. To run, type “runit.bat”
to get the code running and then shoot the planet. Note: If the gun seems inaccurate, raise the
brightness of the TV and avoid a bright light. Written by Kevin Thompson of SCEE.

DMPSX Samples
Just what is DMPSX? Inline macros have been created in the hader files inline_a.h, inline_c.h, and
inline_o.h to take the place of the regular GTE functions. DMPSX will process the macro headers
and produce GTE function calls in assembly language, to avoid the overhead of making a function
call and to help your code fit within the 4KByte Instruction Cache of the R3000.

Directory: \psx\sample\graphics\dmpsx
"tuto0.c" shows an example of improving program performance using DMPSX You can compare the
performance of two programs, one using the libgte low-level- functions and another using the
DMPSX. This sample program runs the DMPSX version as a default. In order to modify the program
to a libgte low-level-function version, just comment out the first define statement

#define DMPSX_MACRO

The number displayed on the screen represents the total time (in horizontal sync's) of the
calculations and drawings.

Directory: \psx\sample\scea\gte

An example of GTE optimization using DMPSX, contributed by Mike Acton, of Sony Interactive
Studios America in San Diego (contributed October 1997). In Mike's own words: "Visually there is
nothing stunning being displayed. The intent is to demonstrate a few optimization methods using the

Page 9 of 21

GTE. " Thanks Mike for the superb documentation!

Graphics Samples
The graphics samples demonstrate a broad range of techniques for programming with the GPU and
the GTE. The directory \psx\sample\graphics\data contains data used by some of the example
programs. To learn how to run the samples, click here

Note: Some of the samples may be confusing to analyze because there are no ".tim" files that are
loaded -- there's merely a header with a large array of unsigned chars. These header files are tim files
that have been converted from binary format. Its advantageous to load static data this way during
development because the compiler keeps track of the addresses for you.

Directory: \psx\sample\graphics\basic
A menu based program that launches the other basic samples:

• 2D -- Exercises functions of libgpu.lib by texture mapping a 512x256 texture pattern on a
3-dimensional curved surface. When 'select' is pressed, the pattern will come to pieces.

• Balls -- Exercises functions of libgpu.lib by displaying a lot of 16x16 sprites. Demonstrates
usage of the functions FntPrint(), KanjiFntPrint(), VSyncCallback(), and VSync()

• Diffuse -- Demonstration of GTE performance using libgte.lib functions. 16x16 balls or
rectangle polygons are diffused from the origin in the world coordinate system.

• mat -- "Matchang” sprite animation. The Matchang animation is placed in the 3rd dimension
• rgb24 -- Demo in the 24-bit mode of the GPU of the PlayStation. Remember, you cannot use

the GTE functions in this mode. This example uses the following functions: StoreImage(),
LoadImage(), MoveImage() .

Directory: \psx\sample\bg
BG drawing function sample using functions in libgs.lib. TIM\CEL\BGD files made up with the
Sprite Editor (available on the Graphic Artist Tools CDROM) may be read in and displayed.

• bgsample: Background sample.
• fix32: Background sample (fast).

Directory: \psx\sample\graphics\clutfog
Fog sample with clut.

• tuto0: A clut is generated frame by frame, and transferred to the vram.
• tuto1: Some cluts are placed on the vram, and switched according to the depth of fog.
• tuto2: Cluts are switched by DR_MOVE. Applicable to drawing by libgs as well.
• tuto3:textured polygon with depth queue (by enchanging CLUT with DR_LOAD primitive)"

Directory: \psx\sample\graphics\divide

• clip: Divide function examples to avoid texture distortion. In readme.txt, PCpoly function
examples included.

• active: Sub-division sample with the direct mapping. Crack problem and z-sorting by the
maximum value not by the center of gravity are included.

Directory: \psx\sample\graphics\fballs

Page 10 of 21

Sample based on "balls" program for decreasing the drawing time. Uses the libgpu.lib functions.

Directory: \psx\sample\graphics\gsgpu
Sample using functions in both libgs.lib (the higher order 3D graphics package) and libgte.lib (the
primitive 3D graphics package) together.

• tuto0: Uses AddPrim() in libgs.
• tuto1: Draws libgs objects with DrawTag().

Directory: \psx\sample\graphics\HMD\anim
Animation examples using the new HMD format.

• tuto0. General HMD animation
• tuto1. Realtime Motion Switch #1
• tuto2. Realtime Motion Switch #2
• tuto3. General HMD animation viewer using view point animation.
• animview. General HMD program (This sample is used to view a vast array of HMD data,

located in the \psx\data\hmd directory.

Directory: \psx\sample\graphics\HMD\basic
Basic viewers using the HMD format

• tuto0. General HMD viewer
• tuto1. HMD viewer using shared polygons
• tuto2. Shuttle viewer using HMD format
• tuto3. HMD viewer using sub divide

Directory: \psx\sample\graphics\HMD\Common
Scanning routine for HMD equipment primitive.

Directory: \psx\sample\graphics\HMD\Mime
Demonstrating of using HMD with MIME.

Directory: \psx\sample\graphics\HMD\pdriver
Sample code of the primitive drivers for HMD.

For more information, click here. June 1997

Directory: \psx\sample\graphics\jimen
Function sample for undistorted texture mapping, demonstrating the use of functions in libgte.lib.

Directory: \psx\sample\graphics\mesh\qmesh
Two dimensional mesh

• tuto0: sample of QMESH function...screen clip
• tuto1: sample of QMESH function...terrain data

Directory: \psx\sample\graphics\mesh\rmesh
Illustrates a round mesh

Directory: \psx\sample\graphics\mesh\smesh

Page 11 of 21

Illustrates strip meshes:

• tuto0: Drawing performance of SMESH functions
• tuto1: Browsing SMESH functions' drawing mode
• tuto2: Icosahedron

Directory: \psx\sample\graphics\mime\joint
MIMe Interactive Animation . MIMe sample program with GsDOBJ5. Controlling 4 MIME
parameters with L1,L2,R1,R2 buttons. The data is a simple gouraud-shaded polygon, and MIME
processing is performed for the normal.

Directory: \psx\sample\graphics\mime\vertex
Sample code for MIMe using GsDOBJ5. Controg 4 MIMe parameters with L1,L2,R1,R2 buttons.
The data is a simple Gouraud-shaded polygon, and MIMe processing is performed for the normal.

Directory: \psx\sample\graphics\mime\vjmime
This is a sample program for manipulating an articulated model using the vertex multiple
inbetweening method and/or the joint multiple inbetweening. They demonstrate two kinds of
joint-MIMes: axes-MIMe, which is interpolation by axes , and RPY-MIMe, which is interpolation by
roll, pitch, and yaw angles.

• tuto0: shows an example of interpolation using both joint-MIMe and vertex-MIMe. tuto1 is
also able to manipulate states of the model.

• Tuto1: shows an example of interpolation using only joint-MIMe.

Directory: \psx\sample\graphics\mipmap
Sample demonstrating mipmaps.

Directory: \psx\sample\graphics\misc\60frames
Demontstrates the difference between 60 frames from 30 frames.

Directory: \psx\sample\graphics\misc\getode
Uses Vsync with Interlace Mode. This example addresses a problem that developers encountered
when trying to achieve 60 fps in interlaced mode. Briefly, if you are using the interlace single
buffer(vertical-480 dot-mode) AND the drawing switch is done by VsyncCallback() instead of
Vsync(), only the odd number fields are cancelled. Thus this would cause the residual image problem
since the background screen is not completely cleared.

In order to avoid the problem, drawing must be started immediately after V-BLNK completion.
Unfortunately, since there is no mechanism available to detect the completion of the V-BLNK using
the current VSyncCallback(), it is necessary to either

• - count the number of H-Sync using VSync()1 during V-BLNK
or

• - add new callback using H-Sync callback (RCnt2).

We would like to introduce more certain way to solve the problem by disclosing the function called,
GetODE() to check if the current field being displayed is the odd or even fields. GetODE() was
officially included in the Release 3.7. This example program illustrates how to use the GetODE()
function.

Page 12 of 21

For more information, click here.

Directory: \psx\sample\graphics\oden
Oden Moving 3 light sources interactively, changing their colors, performing the real-time lighting
calculation.

Directory: \psx\sample\graphics\phong
An example showing how to do Phong shading using functions in libgte

Directory: \psx\sample\graphics\ppm
Undistorted mapping (perfect perspective mapping) using functions in libgte

Directory: \psx\sample\graphics\rotate
Examples demonstrating rotation.

• arot: Rotation angle interpolation program
• intrpol: various kinds of interpolating about rotation
• mat2rot: Get Euler's angles from rotation matrix

Directory:\psx\sample\graphics\rotmat
Difference between RotMatrix and RotMatrix_gte

Directory: \psx\sample\graphics\shadow
This program calculates a shadow cast by a floating triangle. Clipping is performed accurately, so the
shadow can be cast on objects such as stair steps.

Directory: \psx\sample\graphics\tmdpmd
 TMD/PMD data viewer.

Directory: \psx\sample\graphics\tmdview\lowlevel
Lowlevel sample with GsTMDfast...() functions

• tuto0: 3 sided polygon, flat
• tuto1: 4 sided polygon, gouraud
• tuto2: Eliminate a gap between polygons (with dmpsx)
• tuto3: Mipmap version (with dmpsx)

Directory: \psx\sample\graphics\tmdview\rcube
Rotating cubes. Variable effect samples for 3D

Directory: \psx\sample\graphics\tmdview\shuttle
Hierarchical coordinate system sample with a space-shuttle model. The Animation such as
opening/closing the hatch is displayed by setting the hatch and a satellite in the shuttle in its child
coordinate.

Directory: \psx\sample\graphics\tmdview\tmdview3
The simplest PMD data display program with GsDOBJ3.

• tuto0: Simplest TMD data display program with GsDOBJ3.

Directory: \psx\sample\graphics\tmdview\tmdview4
The simplest TMD data display program with GsDOBJ2

Page 13 of 21

• tuto0: simple tmdviewer using GsDOBJ2(GsSortObject4())
• tuto1: using GsSortObject4J()
• tuto2: active sub divide sample
• tuto3: sample code for split screen using GsDOBJ5
• tuto4: sample code for multi ot and using same object with different hadlers.
• tuto5: multi screen coordinate sample
• tuto6: sample code of subjective move.
• tuto7: using GsSortObject4J() and using material attenuation in GsDOBJ2

Directory: \psx\sample\graphics\tmdview\tmdview5
TMD data display program with GsDOBJ5

• tuto0: Simplest TMD data display program with GsDOBJ5
• tuto1: Sample of split screen
• tuto2: With modeling data some objects are displayed. More than one OT are used.
• tuto3: Automatic division with GsDOBJ5 attribute
• tuto4: Multi-screen coordinate system
• tuto5: Sample rewritten with GsSortObject5J
• tuto6: Sample where the viewpoint is moved subjectively

Directory: \psx\sample\graphics\tod
Animation with tod

• janken: Multiple interactive tod animation
• todview: Simple animation

Directory: \psx\sample\graphics\trr
Samples of how to use the TransRot...() functions to eliminate gaps between polygons.

Directory: \psx\sample\graphics\tuto

• tuto0. Displaying sprites
• tuto1. Drawing test with OT
• tuto2. Drawing a rotating polygon with GTE
• tuto3. Drawing a rotating cube
• tuto4. Drawing a cube with the light source
• tuto5. Drawing multiple 3D objects
• tuto6. Testing a 1D scrolling BG
• tuto7. Drawing a cube with the depth cueing
• tuto8. Showing a cell-type BG
• tuto9. Showing a 3D-cell-type BG
• tuto10. 3D cell type BG (bird view)
• tuto11. pseudo mosaic effect
• tuto12. pseudo line scroll effect
• tuto13. multi window operation

Directory: \psx\sample\graphics\walk
An object walks on a polygon Constraining an object on a polygon. On a object (object1) created by
polygons, another object (object2) may move around. The object1 may take any shapes. The object2

Page 14 of 21

changes its direction according to the direction of the object1's normal.

Directory: \psx\sample\graphics\texaddr\wave
This sample shows the pseudo environment map of the wave reflection of a clock by modulating
texture address in real time, and the refraction of a clock under the water. tuto1, tuto2 and tuto3 are
tuned with DTL-H2700 and Performance analyzer. "main" has auto-demo mode that changes three
scenes.

• tuto1. clock in a swimming pool with DMPSX
• tuto2. clock in a swimming pool tune CPU process (scratch pad is assigned to stack)
• tuto3. clock in a swimming pool tune GPU process (divide OT)
• main . 2-minute auto demo including three scenes

Directory: \psx\sample\graphics\zimen
Terrain. A group of programs to display the endless plane

• tuto0: Active primitive subdivision (with dmpsx)
• tuto1: Basic viewing volume clipping
• tuto2: Meshed ground pattern without height
• tuto3: Meshed infinite ground pattern
• tuto4: Meshed ground with active subdivision
• tuto5: Terrain sample with CLUT FOG (version with libgs)

Directory: \psx\sample\scea\fire
This is an instructional program that illustrates how to make a procedural texture which can then be
used multiple times. Contributed by Mike Koziniak of SCEA, November 1997. A modification of
the \sample\scee\graphics\flame demo by Jason Page, SCEE.

Directory: \psx\sample\scee\graphics\chrome2
A stunning example of enivonment mapping. A spinning glass crystal is surrounded by some chrome
objects. The objects look so real, you'll be stunned. This demonstrates the best in PlayStation
capabilities. Contributed by Dave Virapen at SCEE, June 1997.

Directory: sample\scee\graphics\flame
Stunning example of generating real-time flames on the PlayStation. Contributed by Jason Page at
SCEE, April 1997.

Directory:sample\scee\graphics\fractal
Eye-popping Fractal landscape viewer. Contributed by Jason Page at SCEE, December 1997.

Directory: \psx\sample\memcard\card
This sample program uses a menu to perform various kinds of accesses on the slot 1 (left) memory
card, such as state-monitoring, formatting, and creating.

Page 15 of 21

Directory: \psx\sample\memcard\mcrd
Memory card samples illustrating the use of libmcrd.lib.

• tuto0.Synchronous processing: Icon generation program
• tuto1.Asynchronous processing: Sample 1 Displays the list of files on the memory card
• tuto2.Asynchronous processing: Sample 2 Selectively copies the Slot1 file(s) to Slot 2

Directory: \psx\sample\old\etc\cman
Memory card management sample which exercises memory card file utilities such as
state-monitoring, formatting, creating.

Directory: \psx\sample\memcard\dongle
Illustrates how to use the memory card as a dongle.

Directory: \psx\sample\scee\etc\archive
A piece of code to perform a memory card save to a PC Hard drive and vice versa. 20 saves have
been supplied with the code for you to test your memory card code with, including a large variety of
European and Japanese Saves to mix ASCII and Kanji fonts in the titles. Contributed by Kevin
Thompson, SCEE, November 1997

Directory: \psx\sample\scee\etc\card
Memory card access. Lists the contents of the memory card inserted in the controller box
DTL-H2080. Note: This uses routines from libraries earlier than Library 4.0, which may require
different routines. Contributed by Dave Coombes , SCEE February 1996>

Directory: \psx\sample\scee\etc\cardconf
Memory card access from SCEE developer's conference. You will have to change the ".lnk" file to
suit your development environment. It allows you to read and write from memory cards using
optimized techniques, while displaying animated graphics and playing seq data. Note: This uses
routines from libraries earlier than Library 4.0, which may require different routines. Contributed
by Dave at SCEE, February 1996

Directory: \psx\sample\scee\etc\cman41
A piece of code to demonstrate how to use Memory card's/Multitaps and Midi music. Compatable
with Lib's 3.7 and above. Contributed by Kevin Thompson with code from Allan J. Murphy at
SCEE June 1997

Directory: \psx\sample\scee\etc\memcard
Kev writes: "This library is something I coded to make programming the memory cards as easy as
possible using the low-level functions supplied libcard.lib. I have also supplied the source code to
the library. this is so you can see just how the code is working and if needed alter and re-compile."
Contributed by Kevin Thompson at SCEE, November 1997.

Directory: \psx\sample\old\etc\card
Memory card boot sample

Page 16 of 21

Directory: \psx\sample\kanji\asc2sjis
Converts the ASCII code to the Shift-JIS code

Directory: \psx\sample\kanji\fontdata
Kanji font data. Size and types available are:]

• 11/13/15 dots.
• non-kanji/first level/second level/vertical/half-size characters.
• Code conversion table

Directory: \psx\sample\kanji\kanjidiv
Command to extract character data. Extracting image data from font data in character units.
Command and viewer for extracted image data.

Directory: \psx\sample\kanji\kanjifnt
Sample to use font data by size.

Directory: \psx\sample\kanji\sjiscode
KANJI Code Viewer Program. Shift-JIS codes of the built-in fonts can be displayed.

Modules, menus, and overlay samples
If you need to have a menu launcher, or you want to partition your game in modules, use the
examples here. These show you how to run overlays, or execute programs using "LoadExec()".

Directory: \psx\sample\module\execmenu
Two examples showing how to launch a program using calls similiar to "system()"/ The programs
launches a menu which allows you to selectively launch the executables in the subdirectories of
BALLS, RCUBE, and ANIM. (These are modified, non-standalone versions of the BALLS, RCUBE,
and ANIM appearing in the directories \psx\sample\graphics and \psx\sample\movie. You will have
to create a CD-ROM image on either a gold disk or the cd-emulator according to the directory layout
in the readme.txt file.) The sample in this directory achives the results through the use of the
functions LoadExec() and Exec(). An alternative method, using overlays, appears in
psx\sample\module\overmenu.

Directory: \pssn\sample\overlay
This example consists of a main program and 3 overlayed levels. The example is only a shell to
demonstrate how to achieve overlays. This is a fine example to start learning how to do overlays;
after mastering this sample, you can then try out the \psx\sample\module\overmenu sample.

Page 17 of 21

Directory: \psx\sample\module\overmenu
Using the technique of overlays, this programs launches a menu which allows you to selectively
launch the executables in the subdirectories of BALLS, RCUBE, and ANIM. (These are modified,
non-standalone versions of the BALLS, RCUBE, and ANIM appearing in the directories
\psx\sample\graphics and \psx\sample\movie. You will have to create a CD-ROM image on either a
gold disk or the cd-emulator according to the directory layout in the readme.txt file.) Alternative
methods, using LoadExec() and Exec() can be found in psx\sample\module\execmenu

Directory: \pssn\sample\prefsmpl
An example showing how to use the tool "prefsect", which renames the sections in a psy-q object file
by prefixing the names with a defined string. For more infomation, click here.

Directory: \pssn\sample\overlay
An example from SN Systems for showing how to do overlays using psylink. For more infomation,
click here.

Directory: \psx\sample\module\cdexec
Start-up utility from CD-ROM/Emulator, used when activating from CD-ROM/Emulator on
DTL-H2000 with snpatch executed. Alternative module of 'resetps 0'.

Directory:\psx\sample\module\menu
Sample Program Viewer which loads execution file. Sample execution files are activated from the
menu. It is necessary that the program which can be activated from this menu should link
"none2.obj" and be written in "menu.lst".

Directory:\psx\sample\graphics\screen
Screen Frame buffer viewer. Demo to explain the display mode and display environment
parameters.

MPEG compression/decompression

Directory: \psx\sample\press\tuto
Tutorial using the functions in the MPEG decompression utilities in the library libpress.lib.

• tuto1: simple VLC decode and MDEC on memory decompression
• tuto2: parallel execution of LoadImage() and DecDCTout()
• tuto3: simple on-memory movie operation
• tuto4: handshake using callback
• tuto5: parallel execution of LoadImage() and DecDCTout() using callback.
• tuto6: complete background on-memory movie decompression
• tuto7: fine tune-up for parameters

SCEA Samples
These samples were created by members of Sony Computer Entertainment America. In addition,
other contributed samples have been incorporated into the categories above.

Directory: \psx\sample\scea\pcfs
PC file -system demonstration Demonstrates how to use the PC-file system function calls using the

Page 18 of 21

Psy-Q development environement. This enables you to write to your PC's hard-drive. Written by
Mike Fulton of SCEA.

SCEE Samples
The samples in this directory were contributed by members of Sony Computer Entertainment Europe
and European developers. In addition, other contributed samples have been incorporated into the
categories above.

Directory: \psx\sample\scee\etc\PAL
Example for PAL users. Please contact SCEE for more information on this. USA developers can
contact SCEA, and we will forward your requests to SCEE

Directory: \psx\sample\scee\kcheats
Complete source for the "killer cheats" program. You must burn a CD or load the CD emulator with
the appropriate files. Please contact SCEE for more information on this. USA developers can contact
SCEA, and we will forward your requests to SCEE.

Directory: \psx\sample\scee\subdiv
Alternative polygon subdivision routines. This does a fast texture mapping to flat and shaded
triangles and quadrilaterals. Contributed by Derek Leigh-Gilchrist.

Directory: \psx\sample\scee\utils\except
Example exception handler that is compatible for versions 3.1 and 3.2 of the library. It is pretty old.
USA developers can contact SCEA, and we will forward your requests to SCEE. Contributed by
Brian Marshall

Directory: \psx\sample\scee\utils\profil
Example code profiler for timing analysis. You will have to edit the "protest.lnk" file to match your
development environment.

Serial Cable samples
On the blue debugging PlayStation, a serial port can be used to communicate with the serial port of
an IBM PC-AT compatible, via the DTL-S3050 cable. For these samples to work, you should burn a
gold disk. Read the instructions in \psx\sample\serial\sio\tuto1\readme.txt. Full source for a
downloading program (which can download your program and then execute it) can be found in
\psx\utility\pcdown; it uses ideas from these samples.

Directory: \psx\sample\serial\sio\tuto1\tuto1
Sample to connect the debugging station with PC via H3050 and echo-back input from PC.

Directory: \psx\sample\serial\sio\tuto1\tuto1
Sample to connect the debugging station with PC via H3050 and echo-back input from PC

Page 19 of 21

NOTE: Some sound examples available in \psx\sample\sound do not have any graphics. You will be
faced with a black screen, but don't panic. Your controller pad serves as a musical keyboard, so just
start pressing the buttons. Full instructions on the pad assignment are available in the "readme.txt"
files in each directory.

Warning:If you have trouble hearing any sounds on a DTL-H2000, but you can see the graphics,
one possible reason is as follows: If the DTL-H2000 is not connected to the DTL-H2010 (CD-ROM
drive, sold separately), or the Psy-Q PSX04 (CD Emulator), the SPU may not reset. In order to insure
proper functioning, attach the included blue SPU attachment to the DTL-H2010 connector:

Now for some samples!

Directory: \psx\sample\sound\3DEffect
This sample shows off 3d sound key on series. Best performance of 3d sound location can be heard
with headphones.

Directory: \psx\sample\sound\balls
Example of combining sound and graphics. While pressing a button, balls bounce in the screen.
When they hit against the wall, different sounds for each ball are generated. SEQ data is used as the
background music. Directory: \psx\sample\sound\basic
Basic play 1. SEQ/SEP data processing function sample. SEQ and SEP data may be played
simultaneously. SEP data consists of 3-connected SEQ data.

Directory: \psx\sample\sound\cdvol
SPU decoded data reading sample using routines in libspu.lib . Music played on the CD is read as the
"SPU decoded data" from the SPU in the background, and the volume is displayed with a graph
(with the display of the peak level).

Page 20 of 21

Directory: \psx\sample\sound\mutual
Wave form data divided transfer sample using function in libsnd. At a timing divided wave form
data is read into the main memory, and transferred to the sound buffer. This process is repeated until
all parts are transferred. As a result, 2 pieces of music may be played.

Directory: \psx\sample\sound\simple
This is a sample program using the sound library. It plays the SEQ data file and displays tempo,
volume, and status on the screen using the jump-table.

Directory: \psx\sample\sound\tuto

• tuto1: Pitch designation/key-on/key-off. According to the control-pad operations, a sound is
played with variable pitches.

• tuto2: Mute. Performing the sound generation, mute-on, mute-off
• tuto3: SPU interrupt. Setting a interrupt in the middle of piano sound data. When the piano

sound starts, and the interrupt occurs, a sine wave is generated.
• tuto4: Noise sound source. Generating a sine wave and noise by changing a pitch.
• tuto5: Divided transfer of wave form data. Alternating divided transfer and sound generation

after the transfer in 2 voices.
• tuto6: Reverb. Generating a piano sound and designating 9 kinds of reverbs for the sound.

Directory: \psx\sample\sound\stream
SPU streaming sample program Sample using the SPU streaming library included in the basic sound
library. Performs playback of 7-channel (14 voices) SPU streams by operating the control pad.
Displays the state of SPU streaming on the screen.

• tuto1: The background is "balls".
• tuto2: The background is "movie".

Directory: \psx\sample\sound\xse
Auto-effect. Example using the sound utility functions. Such effects as pitch-bend, auto-panning,
auto-volume are produced to the keyed-on sounds. By moving a thumb in the scroll bar,
auto-panning, auto-volume, and pitch-bend may be available.

Thread Samples

Directory: \psx\sample\thread
Sample to process other jobs until the next VSync

Math Samples

Directory: \psx\sample\math\tree
Sample demonstrating how to use the trigonometric math functions to draw a tree curve.

Page 21 of 21

We appreciate your comments and suggestions about our HTML
documentation project. Contact us at
DevTech_Support@playstation.sony.com

Copyright © 1998 Sony Computer Entertainment America Inc. All Rights
Reserved.
PlayStation and PlayStation logos are trademarks of Sony Computer
Entertainment Inc. All other trademarks are property of their respective
owners and/or their licensors.

