
Run-Time Library Overview

© 1998 Sony Computer Entertainment Inc.

Publication date: August 1998

Sony Computer Entertainment America
919 E. Hillsdale Blvd., 2nd floor
Foster City, CA 94404

Sony Computer Entertainment Europe
Waverley House
7-12 Noel Street
London W1V 4HH, England

The Run-Time Library Overview manual is supplied pursuant to and subject to the terms of the Sony
Computer Entertainment PlayStation® License and Development Tools Agreements, the Licensed
Publisher Agreement and/or the Licensed Developer Agreement.

The Run-Time Library Overview manual is intended for distribution to and use by only Sony Computer
Entertainment licensed Developers and Publishers in accordance with the PlayStation® License and
Development Tools Agreements, the Licensed Publisher Agreement and/or the Licensed Developer
Agreement.

Unauthorized reproduction, distribution, lending, rental or disclosure to any third party, in whole or in part,
of this book is expressly prohibited by law and by the terms of the Sony Computer Entertainment
PlayStation® License and Development Tools Agreements, the Licensed Publisher Agreement and/or the
Licensed Developer Agreement.

Ownership of the physical property of the book is retained by and reserved by Sony Computer
Entertainment. Alteration to or deletion, in whole or in part, of the book, its presentation, or its contents is
prohibited.

The information in the Run-Time Library Overview manual is subject to change without notice. The content
of this book is Confidential Information of Sony Computer Entertainment.

PlayStation and PlayStation logos are registered trademarks of Sony Computer Entertainment Inc. All other
trademarks are property of their respective owners and/or their licensors.

iii

Run-Time Library Overview

Summary Table of Contents

About This Manual xi

Chapter 1: Overview of the PlayStation OS 1-1

Chapter 2: Kernel Library 2-1

Chapter 3: Standard C Library 3-1

Chapter 4: Math Library 4-1

Chapter 5: Memory Card Library 5-1

Chapter 6: Extended Memory Card Library 6-1

Chapter 7: Data Compression Library 7-1

Chapter 8: Basic Graphics Library 8-1

Chapter 9: Basic Geometry Library 9-1

Chapter 10: Extended Graphics Library 10-1

Chapter 11: CD/Streaming Library 11-1

Chapter 12: Extended CD-ROM Library 12-1

Chapter 13: Controller/Peripherals Library 13-1

Chapter 14: Link Cable Library 14-1

Chapter 15: Extended Sound Library 15-1

Chapter 16: Basic Sound Library 16-1

Chapter 17: Serial Input/Output Library 17-1

Chapter 18: HMD Library 18-1

iv Table of Contents

Run-Time Library Overview

v

Run-Time Library Overview

List of Figures

Figure 1–1: Boot Sequence 1-5
Figure 1–2: PlayStation library structure 1-5
Figure 2–1: Execution File Memory Map 2-16
Figure 7–1: Data Expansion and Display by MDEC 7-4
Figure 7–2: 320x240 Image Breakdown 7-5
Figure 7–3: DCT Processing 7-5
Figure 7–4: DCT Compression 7-7
Figure 7–5: DCT Decompression 7-7
Figure 8–1: Graphics System 8-4
Figure 8–2: Frame Buffer 8-4
Figure 8–3: Pixels 8-5
Figure 8–4: Display Area and Screen Area 8-7
Figure 8–5: Drawing a Quadrilateral 8-13
Figure 8–6: Polygon Vertex Format 8-16
Figure 8–7: Perspective Transformation 8-16
Figure 8–8: Drawing After Registering in OT 8-20
Figure 8–9: Packet Double Buffer 8-20
Figure 8–10: Texture Pattern Format 8-22
Figure 8–11: Primitive Rendering Speed 8-26
Figure 8–12: Clipping 8-29
Figure 8–13: Cache Blocks in Texture Page 8-29
Figure 8–14: Cache Entries 8-30
Figure 8–15: Drawing Rule 8-34
Figure 8–16: Mapping 8-35
Figure 8–17: Displayed Contents 8-35
Figure 8–18: Mapping 8-36
Figure 8–19: Displayed Contents 8-36
Figure 8–20: Mapping 8-37
Figure 8–21: Displayed Contents 8-37
Figure 8–22: Mapping 8-38
Figure 8–23: Displayed Contents 8-38
Figure 8–24: Display Starting Position 8-40
Figure 8–25: Switching between even and odd fields 8-43
Figure 9–1: Coordinate Axes 9-9
Figure 9–2: Vertex Order 9-9
Figure 9–3: Four Vertices 9-9
Figure 9–4: Writing Data using DR_LOAD Primitives 9-12
Figure 9–5: Strip Mesh 9-17
Figure 9–6: Round Mesh 9-17
Figure 9–7: PACKET Gp Configuration 9-18
Figure 9–8: VERTEX 9-18
Figure 10–1: Hierarchical Structuring 10-6
Figure 10–2: Viewpoint and Screen 10-8
Figure 10–3: Preset Packet Format 10-14
Figure 10–4: 3-Dimensional Processing Flowchart 10-16
Figure 10–5: Texture Location 10-20
Figure 10–6: Polygon Vertex Order 10-21
Figure 11–1: Process of CD-ROM Transfer 11-5
Figure 11–2: ADPCM Sector Interleave 11-17
Figure 11–3: Example Multichannel Interleave 11-17
Figure 11–4: Ring Buffer Size 4 Example 11-33
Figure 12–1: CD libraries 12-3
Figure 13–1: Callback Context 13-4
Figure 13–2: Callback Context 13-6

vi List of Figures

Run-Time Library Overview

Figure 13–3: Timing with VSync Interrupts (1) 13-8
Figure 13–4: Timing with VSync Interrupts (2) 13-9
Figure 13–5: 13-11
Figure 15–1: SEQ data format 15-3
Figure 15–2: SEP data format 15-4
Figure 15–3: VAB format and VAB header 15-7
Figure 16–1: Sound Buffer Memory Layout 16-7
Figure 16–2: Four States and their Transitional States 16-11
Figure 16–3: Four Callback Functions and Transitional States 16-12
Figure 18–1: Hierarchical Structure 18-4
Figure 18–2: Strip Mesh 18-4
Figure 18–3: Shared Polygons 18-5
Figure 18–4: Combining vertex and joint MIMe 18-6
Figure 18–5: HMD Basic Architecture 18-6
Figure 18–6: Process flow and data structures 18-7
Figure 18–7: Linking primitive sets and coordinate systems 18-8
Figure 18–8: Primitive sets, primitives, primitive headers, sections 18-12

vii

Run-Time Library Overview

List of Tables

Table 2–1: SYSTEM.CNF Overview 2-3
Table 2–2: ToT Entries 2-4
Table 2–3: Descriptor Bit Patterns 2-5
Table 2–4: Descriptor Classification 2-5
Table 2–5: List of Root Counters 2-7
Table 2–6: Counter Timing 2-8
Table 2–7: Pixel Display Timing and Display Width 2-8
Table 2–8: Root Counter Mode (1) 2-8
Table 2–9: Root Counter Mode (2) 2-8
Table 2–10: Root Counter Mode (3) 2-8
Table 2–11: Root Counter Gate Condition 2-9
Table 2–12: Cause Descriptor (Kernel Library Related Only) 2-10
Table 2–13: Event Conditions 2-11
Table 2–14: Event Modes 2-11
Table 2–15: TCB status 2-13
Table 2–16: Register-Specified Macro 2-14
Table 2–17: IO Device 2-15
Table 2–18: CD-ROM File System (ISO 9660 Level 1) 2-15
Table 2–19: PlayStations Inherent Limitation with Respect to CD-ROM 2-15
Table 2–20: Memory Card File System 2-16
Table 2–21: Summary of Terminal Types 2-18
Table 2–22: Mouse 2-18
Table 2–23: 16-Button Analog 2-18
Table 2–24: Gun Controllerr (Konami) 2-18
Table 2–25: 16-Button 2-18
Table 2–26: Analog Joystick 2-19
Table 2–27: Gun Controller (Namco) 2-19
Table 2–28: Analog Controller 2-19
Table 2–29: Multi-tap Received Data Configuration 2-19
Table 2–30: Button status bit assign 2-20
Table 2–31: Kanji Fonts 2-20
Table 2–32: Font Data Format 2-21
Table 2–33: Memory card allocation functions 2-22
Table 2–34: Performance comparison between memory allocation functions 2-22
Table 3–1: Header Files 3-3
Table 4–1: Float Format 4-3
Table 4–2: Double Format 4-3
Table 4–3: Error Notificaton 4-4
Table 5–1: Memory Card Specifications 5-3
Table 5–2: Events Associated with the Memory Card 5-3
Table 5–3: Memory Card BIOS 5-4
Table 5–4: Memory Card File System 5-6
Table 5–5: Memory Card File Names 5-8
Table 5–6: Memory Card File Header 5-8
Table 5–7: Type Field 5-9
Table 6–1: Memory Card Specifications 6-4
Table 6–2: Memory Card Filenames 6-5
Table 6–3: Memory Card File Header 6-6
Table 6–4: Type Field 6-6
Table 7–1: Compression and Decompression Algorithms 7-6
Table 7–2: Decompression Speed and Resolution 7-9
Table 7–3: Transfer Speed and Data Size 7-9
Table 8–1: Display Modes 8-5
Table 8–2: Double Buffer 8-7

viii List of Tables

Run-Time Library Overview

Table 8–3: Polygon Primitives 8-9
Table 8–4: Line Primitives 8-10
Table 8–5: Sprite Primitives 8-10
Table 8–6: Special Primitives 8-10
Table 8–7: OT 8-15
Table 8–8: Reset Levels 8-17
Table 8–9: libgpu callback registering functions 8-18
Table 8–10: Texture Pattern Modes 8-22
Table 8–11: Transparent/Semi-Transparent Pixels 8-24
Table 8–12: Semi-Transparency Rates 8-24
Table 8–13: Texture Cache Size 8-26
Table 8–14: Access Cycles 8-27
Table 8–15: Number of Access Cycles 8-27
Table 8–16: Number of Cycles in POLY_FT4 8-27
Table 8–17: Number of Cycles in SPRT 8-28
Table 8–18: Number of Cycles Used when Reduction Is Involved 8-28
Table 8–19: Texture Cache Dependencies 8-28
Table 8–20: Size of Cache Blocks and Cache Entries 8-31
Table 8–21: Differences between NTSC and PAL 8-39
Table 9–1: Flag Bit Settings 9-16
Table 9–2: 16-Bit Flag Bit Settings 9-17
Table 9–3: 4-Type Bit Configuration 9-18
Table 9–4: Polygon Division Functions 9-21
Table 10–1: Semitransparency Rates 10-7
Table 10–2: Packet Creation Function Comparison Chart 1 10-15
Table 10–3: Packet Creation Function Comparison Chart 2 10-15
Table 10–4: State of Scratch Pad Consumption 10-18
Table 10–5: Scratch pad usage volume 10-18
Table 10–6: mip-map Lower Function Group 10-19
Table 11–1: Sector Types 11-3
Table 11–2: Primitive Commands and Corresponding Codes 11-6
Table 11–3: Primitive Command Arguments 11-7
Table 11–4: Primitive Command Return Values 11-8
Table 11–5: Bit Assignments of Status Byte 11-8
Table 11–6: The Operation of CdlSeek/CdlSeekP 11-9
Table 11–7: Mode Settings of CdlSetmode 11-10
Table 11–8: CdlGetlockL Parameters 11-10
Table 11–9: CdlGetLocP 11-11
Table 11–10: CdlGetTN 11-11
Table 11–11: CdlGetTD 11-11
Table 11–12: Primitive Command Processing Status 11-12
Table 11–13: CdSync() Mode ArgumentValues and Contents 11-12
Table 11–14: Retry Read/No-Retry Read 11-14
Table 11–15: Sector Buffer Status 11-14
Table 11–16: Information Obtained in Report Mode 11-18
Table 11–17: Event Services 11-18
Table 11–18: Callback, Synchronous Functions 11-19
Table 11–19: Error levels 11-27
Table 11–20: Interrupt Functions 11-34
Table 12–1: Primitive Commands 12-4
Table 12–2: Structures 12-4
Table 12–3: Confirming completion of command 12-7
Table 13–1: Callback Types 13-4
Table 13–2: Initialization Functions that Call ResetCallback() 13-4
Table 13–3: Button Data 13-12
Table 13–4: buf0, buf1 buffer structures defined in InitGUN 13-13

List of Tables ix

Run-Time Library Overview

Table 13–5: System Clock/Pixel Clock Conversion 13-13
Table 13–6: Receiving Packet Format 13-14
Table 13–7: Memory Card 13-15
Table 13–8: Terminal Types 13-16
Table 13–9: Mouse 13-16
Table 13–10: 16-button Analog 13-16
Table 13–11: Gun Controller (Konami Ltd.) 13-16
Table 13–12: Analog Joystick 13-17
Table 13–13: Gun Controller (Namco Ltd.) 13-17
Table 13–14: Analog Controller 13-18
Table 13–15: Receive Data Structure For Multi Tap Controller 13-18
Table 13–16: Button State Bit Assignments (1) 13-19
Table 13–17: Button State Bit Assignments (2) 13-19
Table 13–18: System Clock-Pixel Clock Conversion Table 13-20
Table 13–19: Actuator Current Drain 13-22
Table 14–1: Link Cable Driver 14-3
Table 14–2: Events 14-3
Table 14–3: Command Summary 14-5
Table 14–4: Driver Status 14-6
Table 14–5: Control Line Status 14-6
Table 14–6: Communication Mode 14-6
Table 14–7: Control Line 14-6
Table 14–8: Communication Specifications 14-7
Table 14–9: Default Settings 14-7
Table 14–10: Control Line Transition 14-8
Table 15–1: Data1~Data3 Contents 15-5
Table 15–2: Data3 Mode Type 15-6
Table 15–3: Data3 Reverb Type (See Also Sound Delicatessen DSP) 15-6
Table 15–4: Looping Using Control Changes 15-6
Table 15–5: Marking via Control Changes 15-7
Table 16–1: LFO Control Expression Format 16-5
Table 17–1: Command Summary 17-3
Table 17–2: Driver Status 17-4
Table 17–3: Control Line Status 17-4
Table 17–4: Communications Mode 17-4
Table 17–5: Communications Specifications 17-5
Table 17–6: Default Setting 17-5

x List of Tables

Run-Time Library Overview

Run-Time Library Overview

About This Manual

This manual is the latest release of the Library Overview for Run-Time Library 4.3. The purpose of this
manual is to provide overview-level information about the PlayStation® libraries. For related descriptions of
the PlayStation run-time library functions and structures, please refer to the Run-Time Library Reference.

Changes Since Last Release

Since release 4.2 of the Run-Time Library Overview, this document has been extensively edited, resulting in
the following changes:

• Some material has been reorganized, particularly Chapter 2, “Kernel Library,” and Chapter 8, “Basic
Graphics Library.” Additionally, the text has been edited to improve readability.

• Some code samples have been made more accurate.
• Some figures and tables have been made more accurate.
• The Library and Header file sections have been consolidated, simplified and corrected.
• In Chapter 8, "Basic Graphics Library," an error in the formula for calculating block_id in the “Structure

of the Texture Cache” section of “Primitive Rendering Speed” was corrected.
• In Chapter 10, "Extended Graphics Library," the “HMD Library” section was deleted and placed into a

new chapter, Chapter 18, "HMD Library."

Related Documentation

This manual should be read in conjunction with the Run-Time Library Reference, which defines all
structures and functions available in the Run-Time Library.

Manual Structure

Chapter Description

Ch. 1: Overview of the PlayStation OS Summarizes the PlayStation operating system
and the run-time libraries.

Ch. 2: Kernel Library Describes the Kernel library (libapi), which
provides an interface between applications and
the PlayStation OS.

Ch. 3: Standard C Library Describes the PlayStation’s subset of the
standard C library (libc/libc2). This library
includes character functions, memory operation
functions, character class tests, non-local
jumps, and utility functions.

Ch. 4: Math Library Describes the Math Library (libmath), which
contains ANSI/IEEE754 compliant math
functions, including a software floating point
computation package.

Ch. 5: Memory Card Library Describes the Memory Card Library (libcard) for
reading/writing to the PlayStation Memory Card
and calling the Memory Card BIOS service.

Ch. 6: Extended Memory Card Library Describes the Extended Memory Card Library
(libmcard), which provides a high-level interface
for accessing the Memory Card.

Ch. 7: Data Compression Library Describes the Data Compression Library
(libpress) for compressing (encoding) and
expanding (decoding) image and sound data.

xii About This Manual

Run-Time Library Overview

Ch. 8: Basic Graphics Library Describes the Basic Graphics Library (libgpu) for
drawing primitives such as sprites, polygons,
and lines.

Ch. 9: Basic Geometry Library Describes the Basic Geometry Library (libgte),
which uses the PlayStation GTE co-processor to
handle high-speed geometry operations.

Ch. 10: Extended Graphics Library Describes the Extended Graphics Library (libgs)
which uses the libgpu and the libgte to construct
a 3-dimensional graphics system. It deals with
more abstract entities such as objects and
background surfaces.

Ch. 11: CD-ROM Library Describes the CD-ROM Library (libcd), for
controlling the PlayStation CD-ROM drive. It
also contains functions for “streaming” real-time
data such as movies, sounds or vertex data
stored on high-capacity media.

Ch. 12: Extended CD-ROM Library Describes the Extended CD-ROM Library (libds),
which builds a new interface to the libcd kernel.
It has the same capabilities as libcd, and places
further emphasis on reliable CD-ROM controls
such as recovery from system errors.

Ch. 13: Controller/Peripherals Library Describes the Controller/Peripherals Library,
which consists of a group of libraries (libetc,
libgun, libtap, and libpad) for performing low-
level interrupt processing and controller-related
functions.

Ch. 14: Link Cable Library Describes the Link Cable Library (libcomb),
which provides services for connecting
PlayStation units via a “link” cable.

Ch. 15: Extended Sound Library Describes the Extended Sound Library (libsnd),
which provides functions for working with sound
data on the PlayStation.

Ch. 16: Basic Sound Library Describes the Basic Sound Library (libspu) for
controlling the SPU (sound processing unit).

Ch. 17: Serial Input/Output Library Describes the Serial Input/Output Library (libsio)
for supporting communications between the
PlayStation and a PC.

Ch. 18: HMD Library Describes the HMD Library (libhmd), which
provides functions and definitions for handling
the HMD format, which integrates modeling,
animation, texture, and MIMe data.

Developer Reference Series

This manual is part of the Developer Reference Series, a series of technical reference volumes covering all
aspects of PlayStation development. The complete series is listed below:

Manual Description

PlayStation Hardware Describes the PlayStation hardware architecture
and overviews its subsystems.

PlayStation Operating System Describes the PlayStation operating system and
related programming fundamentals.

Run-Time Library Overview Describes the structure and purpose of the
run-time libraries provided for PlayStation
software development.

About This Manual xiii

Run-Time Library Overview

Run-Time Library Reference Defines all available PlayStation run-time library
functions, macros and structures.

Inline Programming Reference Describes in-line programming using DMPSX,
GTE inline macro and GTE register information.

SDevTC Development Environment Describes the SDevTC (formerly "Psy-Q")
Development Environment for PlayStation
software development.

3D Graphics Tools Describes how to use the PlayStation 3D
Graphics Tools, including the animation and
material editors.

Sprite Editor Describes the Sprite Editor tool for creating
sprite data and background picture
components.

Sound Artist Tool Provides installation and operation instructions
for the DTL-H800 Sound Artist Board and
explains how to use the Sound Artist Tool
software.

File Formats Describes all native PlayStation data formats.
Data Conversion Utilities Describes all available PlayStation data

conversion utilities, including both stand-alone
and plug-in programs.

CD Emulator Provides installation and operation instructions
for the CD Emulator subsystem and related
software.

CD-ROM Generator Describes how to use the CD-ROM Generator
software to write CD-R discs.

Performance Analyzer User Guide Provides general instructions for using the
Performance Analyzer software.

Performance Analyzer Technical Reference Describes how to measure software
performance and interpret the results using the
Performance Analyzer.

DTL-H2000 Installation and Operation Provides installation and operation instructions
for the DTL-H2000 Development System.

DTL-H2500/2700 Installation and Operation Provides installation and operation instructions
for the DTL-H2500/H2700 Development
Systems.

Typographic Conventions

Certain Typographic Conventions are used through out this manual to clarify the meaning of the text. The
following conventions apply to all narrative text except for structure and function descriptions:

Convention Meaning

courier Indicates literal program code.

Bold Indicates a document, chapter or section title.

The following conventions apply within structure and function descriptions only:

Convention Meaning

Medium Bold Denotes structure or function types and names.

Italic Denotes function arguments and structure members.

xiv About This Manual

Run-Time Library Overview

Developer Support

Sony Computer Entertainment America (SCEA)Sony Computer Entertainment America (SCEA)Sony Computer Entertainment America (SCEA)Sony Computer Entertainment America (SCEA)

SCEA developer support is available to licensees in North America only. You may obtain developer support
or additional copies of this documentation by contacting the following addresses:

Order Information Developer Support

In North AmericaIn North AmericaIn North AmericaIn North America In North AmericaIn North AmericaIn North AmericaIn North America
Attn: Developer Tools Coordinator E-mail: DevTech_Support@playstation.sony.com
Sony Computer Entertainment America Web: http://www.scea.sony.com/dev
919 East Hillsdale Blvd., 2nd floor Developer Support Hotline: (650) 655-8181
Foster City, CA 94404 (Call Monday through Friday, 8 a.m. to 5 p.m.,
Tel: (650) 655-8000 PST/PDT)

Sony Computer Entertainment Europe (SCEE)Sony Computer Entertainment Europe (SCEE)Sony Computer Entertainment Europe (SCEE)Sony Computer Entertainment Europe (SCEE)

SCEE developer support is available to licensees in Europe only. You may obtain developer support or
additional copies of this documentation by contacting the following addresses:

Order Information Developer Support

In EuropeIn EuropeIn EuropeIn Europe In EuropeIn EuropeIn EuropeIn Europe
Attn: Production Coordinator E-mail: dev_support@playstation.co.uk
Sony Computer Entertainment Europe Web: https://www-s.playstation.co.uk
Waverley House Developer Support Hotline:
7-12 Noel Street +44 (0) 171 447 1680
London W1V 4HH (Call Monday through Friday, 9 a.m. to 6 p.m.,
Tel: +44 (0) 171 447 1600 GMT or BST/BDT)

http://www.scea.sony.com/dev
https://www-s.playstation.co.uk

Run-Time Library Overview

Chapter 1:
Overview of the PlayStation OS

Table of Contents

The PlayStation OS 1-3

Features of the PlayStation OS 1-3
Programming in C 1-3
Easy Access to the Features of the R3000 1-3
Small Size, Emphasis on Performance 1-3
Provision for Hardware Functions 1-3
Single and Multitasking 1-4
The File System Device Driver 1-4

Starting and Operating the OS 1-4
Activation of the OS 1-4
Boot Sequence 1-4

PlayStation OS Library Components 1-5
libapi (Kernel Library) 1-6
libc/libc2 (Standard C Libraries) 1-6
libmath (Math Library) 1-6
libcard (Memory Card Library) 1-6
libmcrd (Extended Memory Card Library) 1-6
libpress (Data Compression Library) 1-6
libgpu (Basic Graphics Library) 1-6
libgte (Basic Geometry Library) 1-6
libgs (Extended Graphics Library) 1-6
libcd (CD/Streaming Library) 1-7
libds (Extended CD-ROM Library) 1-7
libetc (Peripherals Library) 1-7
libtap (Multi Tap Library) 1-7
libgun (Gun Library) 1-7
libpad (Controller Library) 1-7
libcomb (Link Cable Library) 1-7
libsnd (Extended Sound Library) 1-7
libspu (Basic Sound Library) 1-7
libsio (Serial Input/Output Library) 1-7
libhmd (HMD Library) 1-7

1-2 Overview of the Playstation OS

Run-Time Library Overview

Overview of the Playstation OS 1-3

Run-Time Library Overview

The PlayStation OS

The PlayStation OS is a flexible and powerful operating system, which allows developers to take maximum
advantage of the PlayStation’s capabilities.

The OS has been developed for the R3000, which is the PlayStation's CPU. The efficiency of program
development relies heavily on the environment and services provided by the OS. If the CPU and peripheral
devices are fast enough, you won’t need to spend your time trying to maximize the hardware’s capabilities.
You can concentrate on programming using the services the OS provides for you.

The PlayStation OS is designed to give the game program developer an environment in which interrupts
can be easily controlled. Based on this concept, the kernel of the PlayStation OS provides services to
control PlayStation hardware and the R3000.

Each service is provided as a C language function. By using C, your programs can be more readable and
maintainable, and you can program more easily using block structure description and function calls.

Features of the PlayStation OS

This section describes the characteristics of the PlayStation’s design concept.

Programming in C

Most services, such as controlling the R3000 CPU and the PlayStation hardware, are provided as C
language functions. Therefore, programs can be written completely in C.

Easy Access to the Features of the R3000

Interrupt control in the R3000 is said to be complicated, but the PlayStation OS uses a substitute
“dispatcher” system which has a simple interface. The dispatcher’s overhead is kept very low, and it
provides low-level support not available in ordinary operating systems. Because of this, the chip's
capabilities can be fully exploited and high quality tuning can be achieved. And because everything can be
done in C, it is not necessary to learn the intricacies of R3000 assembler.

Small Size, Emphasis on Performance

Because of the importance of an application's performance, the PlayStation OS was designed so that its
RAM usage (64K bytes) and use of the CPU are kept to a minimum. In addition, the OS system tables are
disclosed, and consideration given to future expansion of the OS.

To achieve greater speed, the PlayStation OS doesn’t carry out many checks of prohibited items that other
operating systems would. This policy allows applications to achieve a higher level of tuning. However, to
avoid the risk of prohibited operations being performed, applications may need to perform some checks
that would normally be carried out by the operating system.

Provision for Hardware Functions

Previously, to control video game machine hardware, one has had to analyze hardware driver code and
painstakingly write one’s code in assembler. The PlayStation OS lightens this burden by providing C
language functions to control hardware. The overhead of each function is kept to a minimum.

1-4 Overview of the Playstation OS

Run-Time Library Overview

Single and Multitasking

The PlayStation OS can carry out many tasks asynchronously while executing code, such as controlling a
CD-ROM drive, which is a comparatively slow device, and playing background music.

When the OS starts, it is in single-task mode. If desired, you can specify that your application will have
multiple tasks or threads. See Chapter 2, “Kernel Library”, for information on threads.

The File System Device Driver

The PlayStation’s file system (i.e., files of data on CD-ROM) is accessed via a device driver. This allows
multiple file systems to coexist, and improves development time by avoiding low level file manipulation
problems.

Starting and Operating the OS

The PlayStation OS provides a game program developer's environment. Therefore, there is fundamentally
no interface for the user to operate directly (excluding the debug monitor in the debug environment).
Applications must provide the user interface.

Activation of the OS

When the system starts, it jumps first a special address in ROM and performs a check on connected
hardware (such as a CD-ROM drive).

It then checks for a suitable disk in the CD-ROM drive. If it finds one, it reads the system configuration file
(SYSTEM.CNF).

If there is no disk, a ROM-resident demonstration program plays repeatedly.

Boot Sequence

The boot sequence is as follows:

Overview of the Playstation OS 1-5

Run-Time Library Overview

Figure 1-1: Boot Sequence

Initialize System Operation Memory

Set System Stack

Initialize Kernel Memory

Initialize System Memory Control Capability

Initialize IO Manager

Set Error Handler

Read System Setting File (system.cnf)

Analyze System Setting File

Maintain All System Table Types

Read Boot Execution File

Set Stack

Execute Boot Execution File

PlayStation OS Library Components

PlayStation libraries can be thought of as low-level libraries or high-level libraries, depending on their
relationship to the PlayStation OS. They form a two-level library structure. Programs may use any level as
needed, and, with some exceptions, may use both levels concurrently.

Figure 1-2: PlayStation library structure

libpad
libcomb

libsio
libgun
libtap

libc/libc2
libmath

libsnlibpresslibspulibapilibgtelibgpu

libgs libsnd libcd libds

libetc

libmcrd

libcard

libhmd

1-6 Overview of the Playstation OS

Run-Time Library Overview

A summary of the libraries follows:

libapi (Kernel Library)

Provides an interface (API) between the PlayStation OS and applications.

libc/libc2 (Standard C Libraries)

A subset of the standard C library, including character functions, memory operation functions, character
class tests, non-local jumps, and utility functions.

libmath (Math Library)

Contains ANSI/IEEE754 compliant math functions and a software floating point computation package.

libcard (Memory Card Library)

Provides functions for controlling the Memory Card, which preserves data after reset and power off. It
includes the Memory Card, the file system, and drivers.

libmcrd (Extended Memory Card Library)

Provides a high-level interface to the Memory Card.

libpress (Data Compression Library)

Provides functions for compressing (encoding) and expanding (decoding) image and sound data.

libgpu (Basic Graphics Library)

Contains commands for the drawing engine and for building a drawing command list. Handles data for
simple entities such as sprites, polygons and lines.

libgte (Basic Geometry Library)

A library for controlling the GTE (geometry transformation engine). Handles data such as matrices and
vertices.

libgs (Extended Graphics Library)

A three-dimensional graphics system which uses libgpu and libgte. Handles larger entities such as objects
and background surfaces.

Overview of the Playstation OS 1-7

Run-Time Library Overview

libcd (CD/Streaming Library)

Reads program, image, and sound data from a CD-ROM drive, and performs playback of DA (digital audio)
and XA sound. Also includes fast disk access through a file name key, and a support function for
simultaneous data reading and processing streaming techniques.

libds (Extended CD-ROM Library)

Builds a new interface to the CD-ROM library kernel. Has the same capabilities as libcd and places further
emphasis on reliable CD-ROM controls such as performing error recovery .

libetc (Peripherals Library)

Performs callback control for using controllers and other peripheral devices and processing low-level
interrrupts.

libtap (Multi Tap Library)

Allows access to 3-8 controllers and memory cards through the optional peripheral multi-tap.

libgun (Gun Library)

Provides access to Light Pen type input equipment which can connect to the controller connector.

libpad (Controller Library)

A library for accessing the controller. Supports extended protocol controllers such as DUAL SHOCK.

libcomb (Link Cable Library)

Communicates between the link cable and PlayStation. It includes an 8-bit block size communication
driver.

libsnd (Extended Sound Library)

Plays as background, sound production sequences that have been prerecorded as score data.

libspu (Basic Sound Library)

Controls the SPU (sound processing unit).

libsio (Serial Input/Output Library)

Sets the standard input/output on the debugging station to SIO 1.

libhmd (HMD Library)

Provides functions and definitions for handling the HMD format, which integrates modeling, animation,
texture, and MIMe data.

1-8 Overview of the Playstation OS

Run-Time Library Overview

Run-Time Library Overview

Chapter 2:
Kernel Library

Table of Contents

Overview 2-3
Library and Header Files 2-3
System Designation File 2-3
System Table Information (ToT) 2-4
Descriptors 2-5
Callbacks 2-6
Inhibition of Interrupts 2-6
Interrupt Context 2-6
Kernel Reserved Memory Areas 2-7

Root Counter Control 2-7
Counter Timing 2-8
Mode 2-8
Gate 2-9
Status Immediately After Kernel Starts 2-9
Root Counter and Critical Section 2-9
Use of the Root Counter by the Kernel 2-9

Events 2-9
Cause Descriptor and Type of Event 2-10
Event Handler 2-10
Event Status 2-11
Mode 2-11
Event Creation 2-11
Clearing an Event 2-11
User-Defined Event 2-11

Threads 2-12
Context and TCB 2-12
Status Immediately After Kernel is Started 2-12
Thread Open and Switching Execution TCB 2-12
Interrupts and TCB 2-12
TCB Status 2-13
Register Specification Macros 2-14

I/O Management 2-15
CD-ROM File System 2-15
Memory Card File System 2-16
Standard I/O Stream 2-16

Module Control 2-16
Execution File Data Structure 2-17

Controller Features 2-17
Initialization 2-17
Buffer Data Format 2-18

Kanji Fonts 2-20
Data Format 2-21

2-2 Kernel Library

Run-Time Library Overview

Usage Example 2-21

Memory Allocation 2-21

Kernel Library 2-3

Run-Time Library Overview

Overview

The Kernel library (libapi) provides an interface (API) by which applications can control basic aspects of the
PlayStation OS, including the CPU and other hardware features.

It includes the following services:

• Root-counter processing
• Event processing
• Thread processing
• IO processing
• Module processing
• Controller
• Other

Library and Header Files

Programs using kernel services must link with the library file libapi.lib .

Source code must include the header files libapi.h and kernel.h .

System Designation File

You use the system designation file system.cnf to reserve memory for stack, tasks and events. The
system reads this file at boot time.

The format of each line of the file is “<KEYWORD> = <CONTENT>”. The table below shows the available
keywords. All characters must be uppercase (1 byte alphanumeric) and there must be a space on either
side of the equal sign. (If there is more than one line with the same parameter within a file, the first one
takes precedence.)

Table 2-1: SYSTEM.CNF Overview

Key word Contents Default Minimum

BOOT Device name:\Product number; cdrom:PSX.EXE;1 N/A
version
Example: BOOT = cdrom:\SLUS_123.45;1

STACK Stack pointer value
when booted 0x801FFF00 0x8010000

TCB Number of task
control blocks (hex) 4 1
Example: TCB = 5

EVENT Number of event
processing blocks (hex) 0x10 0

Example: EVENT = 5

The maximum number of task control blocks and event control blocks that you can allocate is shown by
the following formula:

TCB * 192 + EVENT * 32 + 544<4096.

2-4 Kernel Library

Run-Time Library Overview

System Table Information (ToT)

The kernel uses several types of tables, such as task control blocks and event control blocks. To access
these tables in a uniform manner, system table information is represented by the structure ToT (Table of
Tables), located at address 0x00000100.

Each entry in the ToT is defined by the following structure (defined in kernel.h) . The member head is a
pointer to the actual table.

struct ToT { /*system table table*/
unsigned long *head; /*system table initial address*/
long size; /*system table size (in bytes)*/

};

The ToT entries are:

Table 2-2: ToT Entries

Entry Corresponding Table

0 System Reserved
1 TCBH (pointer to execution TCB)
2 Task control block (TCB) array
3 System reserved
4 Event control block array
5-31 System reserved

The data structure of ToT is as follows. The structure is defined by the header file kernel.h included with
the library.

struct ToT { /*system table table*/
unsigned long *head; /*system table initial address*/
long size; /*system table size (in bytes)*/

};

The TCB (Task control block) structure contains information about a specific task. (See “Threads” for more
information on using TCBs.) The TCBs are stored in an array, pointed to by the TCB entry of the ToT.

The TCBH structure contains a pointer to the currently executing TCB.

struct TCB { /*task control block*/
long status; /*status*/
long mode; /*mode*/
unsigned long reg [NREGS]; /*register save area*/

/*specify with register-specified macro*/
long system[6]; /*system reserved*/

};

struct TCBH { /*task status queue*/
struct TCB *entry; /*pointer to execution TCB*/
long flag; /*system reserved*/

};

The ToT can be used as follows:

Example 1: Getting the Pointer to the Execution TCB
struct ToT *t = (struct ToT *)0x100; /* address of ToT */
struct TCBH *h = (struct TCBH *)((t + 1)->head); /* address of TCB status

queue header, which contains a pointer to currently executing TCB */
struct TCB *tcb_exec = (struct TCB*)(h->entry); /* address of execution TCB
*/

Kernel Library 2-5

Run-Time Library Overview

Example 2: Getting the Pointer to the Start of the TCB Array
struct TCB *tcb_0 = (struct TCB *)((t + 2)->head;

Example 3: Getting the Pointer to the Start of the Event Control Block Array

struct EvCB *evcb_0 = (struct EvCB *)((t + 4)->head);

See the Run-time Library Reference for the definition of EvCB.

Descriptors

When you work with certain system resources such as files or threads, the kernel provides you with
descriptors to refer to the resources. Descriptors are unsigned 32-bit integers, with the following bit
assignments:

Table 2-3: Descriptor Bit Patterns

Bit Number Contents

31-24 Descriptor classification
23-16 Reserved by system
15-0 System table number

The kinds of descriptors available are listed below. Each macro is defined in kernel.h .

Table 2-4: Descriptor Classification

Macro Class contents Notes

DescTH Thread
DescHW Hardware System internal use
DscEV Event
DescRC Root counter
DescUEV User-defined flag
DescSW System call System internal use

The normal procedure for keying descriptors to system resources is as follows:

1. Obtaining descriptors.

First call the Open() function provided for each resource. The return value of the function is the
descriptor of that resource.

2. Operation of resources.

Use the descriptor returned by the Open() function to specify the resource and perform the operation
required.

3. Closing descriptors.

After use, close the descriptor with the appropriate Close() function.

Example 1: Thread Descriptor
unsigned long th, th_new;
th = OpenTh(0x1000,0x1ffff0,0x00);
th_new = OpenTh(0x2000,0x18fff0,0x00);
ChangeTh(th);
ChangeTh(th_new);
CloseTh(th);

Example 2: File Descriptor
unsigned long fd, ret;
char buf[2048];
fd = open("cdrom:PSX.EXE;1",O_RDONLY);
ret = read(fd, buf, 1048);
close(fd);

2-6 Kernel Library

Run-Time Library Overview

Example 3: Event Descriptor
unsigned long ev;
extern long (*handle)();
ev = OpenEvent(RCntCNT0, EvSpINT, EvMdINTR, handle);
EnableEvent(ev);
DisableEvent(ev);
CloseEvent(ev);

Callbacks

In libraries (such as libgpu or libsnd) that handle devices using DMA, there is a function for registering
callback functions in the kernel. Callback functions are executed after an event has occurred.

Callback functions are executed in the Callback Context (last out), using their callback stack. This stack is
declared in libetc and is included in the application data area.

The callback function is called automatically when a DMA transfer is completed. You can execute transfer
completion processing by setting a flag in an external variable and issuing an event.

Inhibition of Interrupts

Any functions modifying data within the kernel must be executed in code where interrupts are inhibited. See
the Run-time Library Reference for information about specific functions.

A section of code in which interrupts are inhibited is called a critical section. Interrupts are inhibited at the
following times:

• Immediately following system start. (They are enabled by calling the function ResetCallbacks()).
• By calling the function EnterCriticalSection().To re-enable interrupts, call ExitCriticalSection().
• Immediately following the start of an event handler. To re-enable interrupts, the handler can call

ReturnFromException() to return to the original context. It can also call ExitCriticalSection(); however, if
an interrupt occurs, control won’t return to the main context but to original interrupt context.

Interrupt Context

We refer to the normal execution of a program as its Main Flow. When an interrupt or exception occurs:

• The system saves the contents of the registers in the Execution TCB as the Main Flow Context (see
“Thread Management”). The status after saving is called the Interrupt Context.

• Processing begins at address 0x00000080, which contains the jump code to the kernel interrupt
dispatcher, which in turn calls the appropriate routine to handle the interrupt.

• When interrupt processing is completed, the contents of the Main Flow Context registers are restored
and execution of the Main Flow resumes.

Functions such as Event Handlers and Callbacks are executed in Interrupt Context (the former uses the
interrupt stack, the latter uses the callback stack). When you write code that executes in Interrupt Context,
keep the following cautions and prohibitions in mind.

Cautions

• Halting interrupts for a long time may adversely affect the system. You should design any routine to be
executed in interrupt context so that it completes in the shortest time possible.

• Functions that generate internal exceptions (e.g., ExitCriticalSection()) cause destruction of the main
flow context. This destruction may be prevented by using the thread management service to change
the execution TCB.

• It is possible to return to the Main Flow by executing ReturnFromException() within an Event Handler.
However, since this breaks off the action of the Interrupt Dispatcher and interrupt management returns
to Main Flow as incomplete, device related malfunctions may occur. Use ReturnFromException() only
for error management functions.

Kernel Library 2-7

Run-Time Library Overview

Prohibitions

Do not:

• Execute functions that use internal interrupts. If interrupts are not generated, the functions cannot
complete.

• Execute non-re-entrant functions that may be called by the main flow. Most library functions, such as
kernel services, are not re-entrant.

• Execute the function ReturnFromException() from within a callback function.

Kernel Reserved Memory Areas

The kernel uses the first 64K bytes of memory. The addresses that the user may use begin from
0x00010000.

Root Counter Control

The root counter control system provides functions such as time restrictions and timing adjustments--
indispensable features in game programs.

Since the root counter is a timer that automatically generates counter timing, the following three are
provided:

• System clock
• System clock (8 spaces)
• Vertical synch.

A 16-bit target value may be set in each of these counters except vertical synch. Counters count up from
zero and when they reach the target value, the following occurs:

1) An interrupt is generated (each counter can be masked).
2) The counter is cleared to zero (counter values capable of search are 0 to target value -1).
3) The counter starts counting again.

Since the target value of vertical synch is fixed at 1, an interrupt is generated at each vertical blank.
Interrupts trigger counter generation and execute optional functions from the event management service
(this is called an event handler). The value of each counter may be polled. Counter names are defined by
macros, and the counters may be accessed using these macros.

Table 2-5: List of Root Counters

Macro Root Counter Notes

RCntCNT0
RCntCNT1 System clock Target value more than 2
RCntCNT2 System clock (8 spaces) Same as above
RCntCNT3 Vertical synch* Target value is fixed at 1

*halting count is invalid

2-8 Kernel Library

Run-Time Library Overview

Counter Timing

One tick is approximately equal to 0.03 microseconds when counting by the system clock. This is an
interval of 8 spaces, with 8 divisions. The count for the graphics display has the following timings.

Table 2-6: Counter Timing

Counter Event NTSC PAL Unit

Vertical Sync 1/60 1/50 Second
Horizontal Sync 63.56 64.00 Microsecond
Pixel Display Nx0.0186243 Nx0.01879578 Microsecond

Table 2-7: Pixel Display Timing and Display Width

Display Width N

256 pixels 10
320 8
384 7
512 5
640 4

The root counter uses the hardware counting function. For this reason, disabled interrupts and software
operations calling functions unrelated to counting, such as StopRCnt(), will continue.

The function StopRCnt() will not stop counting. This function uses the RcntMdINTR macro for halting
creation of interrupts for counters allowed interrupts. In the same way, the StartRCnt() function only allows
interrupts; it does not affect counting.

Mode

For each counter the following modes may be set. Modes are defined by macros. The macros in
Tables 2-9, 2-10, and 2-11 below can be set by logic.

Table 2-8: Root Counter Mode (1)

Macro Contents

RCntMdINTR Interrupt permitted
RCntMdNOINTR Interrupt prohibited (polling only)

Table 2-9: Root Counter Mode (2)

Macro Object root counter Types of counter

RCnDtMdSP RCntCNT0,1 (Use prohibited)
(Default)

RCntCNT2 System clock 8 second cycle
RCntCNT3 Vertical blanking

RCntMdSC RCntCNT0,1 System clock
RCntCNT2,3 Not valid

Table 2-10: Root Counter Mode (3)

Macro Contents

RCntMdFR (default) Normal count
RCntMdGATE Valid gate condition

Kernel Library 2-9

Run-Time Library Overview

Gate

Each counter will count up only when a condition called gate occurs.

Table 2-11: Root Counter Gate Condition

Root counter Gate conditions

RCntCNT0 Not during horizontal blanking
RCntCNT1 Not during vertical blanking
RCntCNT2,3 None (usual time count)

Status Immediately After Kernel Starts

All counters are stopped immediately after activating the kernel. Immediately after the kernel starts all of the
counters are stopped or free running. Thus, when they are used they must always be initialized. Also,
depending on the service and the library, it may be that the user has to initialize the root counter before
use.

Root Counter and Critical Section

A counter interrupt cannot occur within a critical section.

Use of the Root Counter by the Kernel

The kernel will use the root counter in the following circumstances. When using the pertinent service, reset
the root counter to the state specified by the kernel.

Obtaining Controller Button Status

Use root counter 3 (vertical blanking) to obtain the status of the controller button. The state of the button
cannot be read when root counter 3 is stopped or has not been initialized.

Events

An event is either a CPU exception or an interrupt from an external device. Since events can occur
asynchronously with the execution of the main program, there are two main methods of dealing with
events:

• Polling to determine whether an event has occurred and, if so, executing some code appropriately.
• Installing an event handler that the system executes automatically when the event occurs.

The system maintains a 4K interrupt stack (last out) within the memory area reserved for the kernel.
Handlers execute in Interrupt Context (last out), using the interrupt stack.

GetSysSp() obtains the highest address of an interrupt stack area.

2-10 Kernel Library

Run-Time Library Overview

Cause Descriptor and Type of Event

An event is specified by two 32-bit integers called the cause descriptor and event type.

Table 2-12: Cause Descriptor (Kernel Library Related Only)

Cause descriptor Contents Event type

RCntCNT0 Root counter interrupt EvSpINT
RCntCNT1 Root counter interrupt EvSpINT
RCntCNT2 Root counter interrupt EvSpINT
RCntCNT3 Root counter interrupt EvSpINT
File descriptor File input/output EvSpEIO
Same as above File close EvSpCLOSE
HwCdRom CD-ROM decoder interrupt EvSpUNKNOWN*
HwSPU SPU interrupt EvSpTRAP
HwGPU GPU interrupt EvSpTRAP
HWPIO Extension parallel port interrupt EvSpTRAP
HwSIO Extension serial port interrupt EvSPTRAP
HwCPU Exceptions EvSpTRAP
DescUEV | m User-defined event (m=0~0xffff) Optional

*Other events are described in the individual libraries.

To install an event handler, you call OpenEvent(), passing in the following parameters:

• The cause descriptor (the cause of the event).
• The event type.
• The event mode.
• The address of the handler function.

If the call to OpenEvent() succeeds, it returns a 32-bit event descriptor that you use to identify the event to
other functions such as EnableEvent(). The system keeps track of information about the event in an event
control block structure:

struct EvCB { /*event control block*/
unsigned long desc; /*cause descriptor*/
long status; /*8 status*/
long spec; /*event type*/
long mode; /*mode*/
(long *FHandler)(); /*function format handler*/
long system [2]; /*system reserved*/

};

Event Handler

An event handler is a function that is called when an event is triggered.

When the event occurs, the registers are saved and the handler begins executing. (Event handlers execute
on an interrupt stack reserved in the kernel). When the handler completes its processing, it calls
ReturnFromException(), which restores the registers and returns to the previous context.

Further, it is possible to permit an interrupt with the ExitCriticalSection() function, to avoid returning to the
source of the interrupt and to make that routine the main flow as is. In this case, the user must provide their
own stack, allocated before the interrupt. The stack can be changed with the SetSp() function.

Kernel Library 2-11

Run-Time Library Overview

Event Status

An event can have one of four possible statuses. Prior to opening an event, its status is EvStUNUSED.
After opening an event with OpenEvent(), its status is EvStWAIT. After calling EnableEvent(), the status
becomes EvStACTIVE; that is, the even may occur.

DisableEvent() switches EvStACTIVE and EvStREADY event states to an EvStWAIT state. Once in the
EvStWAIT state, the next event activated by EnableEvent() must be in the EvStACTIVE state. The previous
state is not saved.

Table 2-13: Event Conditions

Macro Contents Generation

EvStUNUSED Not opened Prohibited
EvStWAIT Event generation prohibited Prohibited
EvStACTIVE Event not yet generated Possible
EvStALREADY Event already generated Prohibited

Mode

Events can have two different modes, which you specify when opening the event. With EvMdINTR, you
specify a handler function to be called when the event occurs. With EvMdNOINTR, you don’t specify a
handler and must test to see whether the event as occurred.

Table 2-14: Event Modes

Macro Status after generation Handler function

EvMdINTR EvStACTIVE Active

EvMdNOINTR EvStALREADY Not active

Event Creation

All applicable enabled events are switched over to the EvStALREADY state based on the source
descriptors and event type specified when the DeliverEvent() function is executed. Events in EvMdINTR
mode are handled by the event handler within the DeliverEvent() function.

Clearing an Event

Clearing an event means switching its state from EvStALREADY to EvStACTIVE. This may be done by
calling UnDeliverEvent() or TestEvent().

UnDeliverEvent() takes a source descriptor and an event type, and clears all applicable events.

TestEvent() takes an event descriptor; if a corresponding event is in the EvStALREADY state, it is switched
to EvStACTIVE. An event must be cleared with UnDeliverEvent() before it is reissued.

User-Defined Event

A user may define events using the DescUEV macro.

DeliverEvent(DescUEV|my_event_num, my_event_spec);

A user-defined event descriptor indicated by the number my_event_num and class my_event_spec may be
called with this macro.

long ev;
ev = OpenEvent(DescUEV|my_event_num, my_event_spec, EvMdNOINTR, NULL);

2-12 Kernel Library

Run-Time Library Overview

is used by WaitEvent() and TestEvent(). The event handler is started when the third argument of
OpenEvent() is EvMdINTR and the fourth argument is not NULL.

Threads

Threads allow an application to have multiple flows of control. They provide a form of multi-tasking in which
contexts can be switched by calling a switching function. This feature may also be used for changing
context at the time of an interrupt.

Context and TCB

The thread context consists of the complete contents of the registers. The context is stored in a data
structure called a task control block (TCB). To switch threads, you store the current thread’s context in a
TCB and then assign the contents of another TCB to the registers.

The context at any given time will be stored in the execute TCB if triggered by the generation of an interrupt
or an explicit function call. The execute TCB is pointed to by the task status queue (TCBH).

For registers, please refer to the section on Register Specification Macros on page 2-14 or to the
PlayStation™ Hardware Guide.

Status Immediately After Kernel is Started

When the kernel starts, the task control block (TCB) array is allocated and the zero element is opened with
OpenTh() and linked in the task status queue as the execution TCB. The default thread’s descriptor is:

DescTH|0x0000=0xff000000

Thread Open and Switching Execution TCB

TCBs may be run using the ChangeTh() function, while allocating the second and later TCBs from the
OpenTh() function.

unsigned long new_th;
new_th=OpenTh(0x80020000,0x1ffff0,0x00);
ChangeTh(new_th);

When the ChangeTh() function is called:

• A software interrupt is issued, which causes a jump into an internal kernel interrupt dispatch routine.
Other interrupts are not allowed at the same time.

• Context of the ChangeTh() function being executed is shunted into the previously executed TCB.
• The specified TCB is linked to the task status queue
• The context read from the execution TCB is reopened when the interrupt dispatch routine finishes.

By changing the newly-executed V0 register value of the context saved in the previously executed TCB, the
return value of ChangeTh() may change when execution is recommenced. From this point on, it is possible
to transmit information from the thread space.

Interrupts and TCB

The context at the time of interrupt is stored in the TCB that is currently being executed by the interrupt
handler. This content will be kept even during a return from the handler to the main flow and will be saved
until the next interrupt.

Kernel Library 2-13

Run-Time Library Overview

TCB Status

The status of a TCB can be TcbStUNUSED or TcbStACTIVE. When a thread is opened with OpenTh(), its
status becomes TcbStACTIVE and you may execute the TCB with ChangeTh().

Table 2-15: TCB status

Macro Status

TcbStUNUSED Not used
TcbStACTIVE Execution possible

2-14 Kernel Library

Run-Time Library Overview

Register Specification Macros

This table shows the macros used to specify the R3000 registers (defined in asm.h).

Table 2-16: Register-Specified Macro

Macro (1) Macro (2) Contents

R_ZERO R_R0 0 fixed
R_AT R_R1 Assembler only
R_V0 R_R2 Return value
R_V1 R_R3 Return Value (for double type)
R_A0 R_R4 Argument #1
R_A1 R_R5 Argument #2
R_A2 R_R6 Argument #3
R_A3 R_R7 Argument #4
R_T0 R_R8 Function-internal work
R_T1 R_R9 Function-internal work
R_T2 R_R10 Function-internal work
R_T3 R_R11 Function-internal work
R_T4 R_R12 Function-internal work
R_T5 R_R13 Function-internal work
R_T6 R_R14 Function-internal work
R_T7 R_R15 Function-internal work
R_S0 R_R16 Function-internal save
R_S1 R_R17 Function-internal save
R_S2 R_R18 Function-internal save
R_S3 R_R19 Function-internal save
R_S4 R_R20 Function-internal save
R_S5 R_R21 Function-internal save
R_S6 R_R22 Function-internal save
R_S7 R_R23 Function-internal save
R_T8 R_R24 Function-internal save
R_T9 R_R25 Function-internal save
R_K0 R_R26 Kernel only #0
R_K1 R_R27 Kernel only #1
R_GP R_R28
R_SP R_R29 Stack pointer
R_FP R_R30 Frame pointer
R_RA R_R31 Return previous address
R_EPC Interrupt return address
R_MDHI Multiplication/division Register (high)
R_MDLO Multiplication/division Register (low)
R_SR Status register
R_CAUSE Cause register

Kernel Library 2-15

Run-Time Library Overview

I/O Management

The PlayStation supports low-level access to files and logical devices. Structures used by the system for
input/output are defined by sys/file.h .

The following devices are supported:

Table 2-17: IO Devices

Device name Contents Example of file designation

cdrom CD-ROM file system cd-rom:PSX.EXE;1

bu Memory Card file system bu00:ABCD12345

Each device has a data access unit called its block size. All data access is done in multiples of the block
size. If there is a fraction in the specified size, it is discarded.

CD-ROM File System

The PlayStation CD-ROM file system conforms to the level 1 format of ISO-9660. File system details are as
follows:

Table 2-18: CD-ROM File System (ISO 9660 Level 1)

Device name cdrom

File format <basename>.<extension name>;<version number>
<base name>in 8 letters<extension>up to 3 letters.
<base name> and <extension> to be separated by “.” (period).
<extension> and <version number> to be separated by a “;”
(semicolon).
Only English capital letters, numbers and “_” (underscore) may be
used.

Directory name format <base name>
<base name> in 8 letters. Only English capital letters, numbers and “_”
(underscore) may be used. <extension> cannot be used.

Directory hierarchy format Maximum levels in the directory is 8. No root name
File arrangement Physically arranges all file sectors so they are contiguous.
Block size 2048 bytes

However, the list of files and directories is only supported as far as it can be stored in one sector (2048
bytes). Accordingly, the benchmarks for PlayStation's inherent limitations are shown below.

Note:Note:Note:Note: The file and directory control data structure in ISO-9660 is variable length. When there is a large
number of short names, it is possible to use multiple directories and files from the numerical values below:

Table 2-19: PlayStation’s Inherent Limitation with Respect to CD-ROM

Total number of entries Total number of files per directory

45 maximum 30 maximum

2-16 Kernel Library

Run-Time Library Overview

Memory Card File System

TheMemory Card file system manages the files on the removable Memory Card used for saving game data.
(Mounting and initialization is performed by libcard BIOS calls). Details of the file system are as follows:

Table 2-20: Memory Card File System

Device name buXY
X: port (0: A port, 1 : B Port)
Y: Extension connector number (1-) or 0

File format <base name>
<base name> ASCII character string to a maximum of 20 bytes.
Extension cannot be used.

Directory structure None

Block size 128 bytes

Standard I/O Stream

The standard I/O stream reserves File Descriptors 0 and 1.

On the game unit, the standard I/O stream is assigned to a NULL device. In the development environment,
the standard input stream is assigned to a NULL device and the standard output stream is assigned to
Debug Message Window #0.

Module Control

Functions are provided to allow you to load and execute application modules.

An execution file conforms to the PlayStation EXE format. It includes:

• Code and data linked to fixed addresses
• A starting address
• A gp register initial value
• Initial value data area starting address and size

Prior to executing the module, the stack area must be explicitly defined, or the current execution context
will be used as is.

The execution file is divided into the following three sections:

Figure 2–1: Execution File Memory Map

Header (2048 bytes) starting with XF_HDR

text section

data section (initial value data)

low

high

2048 byte
multiples

Kernel Library 2-17

Run-Time Library Overview

Execution File Data Structure

The execution file is structured as follows:

struct EXEC { /*execution file information*/
unsigned long pc0; /*execute start address*/
unsigned long gp0; /*gp register initial value*/
unsigned long t_addr; /*text and data section lead address with

initial value*/
unsigned long t_size; /*text and data section size with initial

value*/
unsigned long d_addr; /* system reserved */
unsigned long d_size; /* system reserved */
unsigned long b_addr; /*data section lead address with no initial

 value*/
unsigned long b_size; /*data section size with no initial value*/
unsigned long s_addr; /*stack area lead address (user specified)*/
unsigned long s_size; /*stack area size (user specified)
unsigned long sp, fp, gp, ret, base; /*register shunt area*/
};

The execution file header is structured as follows:

struct XF_HDR { /*execution file header *?
char key[8}; /*key code*/
unsigned long text; /*text section size (*/
unsigned long data; /*data section size */
struct EXEC exec; /*execution file information*/
char title[60]; /*license code

};

Controller Features

Libapi provides a low-level interface to regulate certain controllers on the PlayStation's main input device.
Applications may directly process received data; each type of controller may be identified dynamically.

Initialization

The normal procedure for initializing the controller is shown below:

InitPAD(buf0, len0, buf1, len1);
StartPAD();

InitPAD() sets up two buffers buf0 and buf1 to receive data from the controllers, and specifies their
maximum input lengths, len0 and len1. StartPad() begins reading the controllers, triggered by the vertical
blank interrupt.

The presence or absence of the device, as well as its state, may be determined by testing the input buffer's
contents.

2-18 Kernel Library

Run-Time Library Overview

Buffer Data Format

Data stored in the receive buffer has the following format.

Table 2-21: Summary of Terminal Types

Terminal Type Controller Name Main Controller Model Number

1 Mouse SCPH-1030
2 16-Button Analog SLPH-00001 (Namco)
3 Gun Controller SLPH-00014 (Konami)
4 16-Button SCPH-1080, 1150
5 Analog Joystick SCPH-1110
6 Gun Controller SLPH-00034 (Namco)
7 Analog Controller SCPH-1150
8 Multi Tap SCPH-1070

Table 2-22: Mouse

Offset Contents

0 Received result 0x00:Success, Other: Failure
1 Upper 4 bits: 0x1

Lower 4 bits: Number of received data bytes/2
2,3 Button Status: 1: Release, 1: Push
4 Movement Value X Direction (-128~127)
5 Movement Value Y Direction (-128~127)

Table 2-23: 16-Button Analog

Offset Contents

0 Received result 0x00: Success, Other: Failure
1 Upper 4 Bits: 0x2

Lower 4 Bits: Number of received bytes/2
2,3 Button status 1: Release, 0: Push
4 Revolution area 0~128~255
5 I Button 0~255
6 II Button 0~255
7 L Button 0~255

Table 2-24: Gun Controller (Konami)

Offset Contents

0 Received result 0x00: Success, Other: Failure
1 Upper 4 bits: 0x3

Lower 4 bits: Number of received data bytes/2
2,3 Button Status 1:Release, 0: Push

Table 2-25: 16-Button

Offset Contents

0 Received result 0x00: Success, Other: Failure
1 Upper 4 bits: 0x4

Lower 4 bits: Number of received data bytes/2
2.3 Button Status 1: Release, 2: Push

Kernel Library 2-19

Run-Time Library Overview

Table 2-26: Analog Joystick

Offset Contents

0 Received result 0x00: Success, Other: Failure
1 Upper 4 bits: 0x5

Lower 4 bits: Number of received data bytes/2
2,3 Button status 1: Release, 0: Push
4 Position X Direction (Right stick) 0~128~255
5 Position Y Direction (Right stick) 0~128~255
6 Position X Direction (Left stick) 0~128~255
7 Position Y Direction (Left stick) 0~128~255

Table 2-27: Gun Controller (Namco)

Offset Contents

0 Received result 0x00: Success, Other: Failure
1 Upper 4 bits: 0x6

Lower 4 bits: Number of received data bytes/2
2,3 Button status 1: Release, 0: Push
4 Position X Direction Lower byte
5 Position X Direction Upper byte
6 Position Y Direction Lower byte
7 Position Y Direction Upper byte

Table 2-28: Analog Controller

Offset Contents

0 Received result 0x00: Success, Other: Failure
1 Upper 4 bits: 0x7

Lower 4 bits: Number of received data bytes/2
2,3 Button status 1: Release, 0: Push
4 Position X Direction (Right stick) 0~128~255
5 Position Y Direction (Right stick) 0~128~255
6 Position X Direction (Left stick) 0~128~255
7 Position Y Direction (Left stick) 0~128~255

Table 2-29: Multi Tap Received Data Configuration

Offset Contents

0 Received result 0x00: Success, Other: Failure

1 0x80

2 Received result 0x00: Success, Other: Failure
3 Upper 4 bits: Terminal types

Port A Lower 4 bits: Number of received data bytes+2
4-9 Received data

10 Received result 0x00: Success, Other: Failure
11 Upper 4 bits: Terminal types

Port B Lower 4 bits: Number of received data bytes+2
12-17 Received data

18 Received result 0x00: Success, Other: Failure
19 Upper 4 bits: Terminal types

Port C Lower 4 bits: Number of data bytes+2

2-20 Kernel Library

Run-Time Library Overview

20-25 Received data

26 Received result 0x00: Success, Other: Failure
27 Upper 4 bits: Terminal types

Port D Lower 4 bits: Number of receive data bytes+2
28-33 Received data

Table 2-30: Button status bit assign

Bit D15 D14 D13 D12 D11 D10 D9 D8

16-Button ← ↓ → ↑ ST SEL
Analog Controller ← ↓ → ↑ ST R3 L3 SEL
Analog Joystick ← ↓ → ↑ ST SEL
16-Button Analog ← ↓ → ↑ ST
Mouse
Gun Controller (Konami) ST
Gun Controller (Namco) A

Bit D7 D6 D5 D4 D3 D2 D1 D0

16-Button • - • • R1 L1 R2 L2
Analog Controller • - • • R1 L1 R2 L2
Analog Joystick • - • • R1 L1 R2 L2
16-Button Analog A B R
Mouse Left Right
Gun Controller (Konami) TRG -

Gun Controller (Namco) B TRG

(1: Release, 0: Push)

The upper 4 bits of the first byte in the buffer are the terminal type, the lower 4 bits are half the value of the
number of bytes received from the terminal (stored in or after the 3rd byte of the buffer.) See the terminal
documentation for the physical arrangement and correspondence of each button and channel.

Kanji Fonts

The PlayStation kernel ROM includes 16 dot x 16 dot 2-value bitmap kanji fonts. Font data must not be
stored consecutively in memory to accommodate memory capacity. Use the service function to obtain the
starting address of the data for each character.

Table 2-31: Kanji Fonts

Data Format 16 dot x 16 dot 2 value bitmap
Character size is 15 dot x 15 dot

Contents JIS 1st standard kanji and non-kanji; gothic type non-
kanji have a top space (0x2121)
Refer to the codeview samples in \psx\kanji\sjiscode for
a list of usable fonts and the fonts themselves.

Code System Shift-JIS

Access Method The starting address in ROM of the applicable font
pattern may be obtained from the shift-JIS code given
to the service function. With that information, the font
pattern may be accessed directly.

Kernel Library 2-21

Run-Time Library Overview

Data Format

In the figure below, the byte of the upper left of the pattern is first, followed by the byte on the upper right.
The most significant bit (MSB) faces left.

Table 2-32: Font Data Format

#0 #1
#2 #3
: :
: :
: :

#30 #31

Usage Example

In the following sample program, the function _get_font() returns a font pattern corresponding to the
specified shift-JIS code. This pattern is in a format that can be transferred to VRAM as a 16-bit texture.

Example: Getting a Kanji Font
unsigned long _get (char *sjis)
{

unsigned short sjiscode;
sjiscode = *sjis << 8 | *(sjis+1);
return Krom2RawAdd(sjiscode); /* get kanji font pattern address */

}

#define COLOR 0x4210
#define BLACK 0x3000

void _get_font (char *s, unsigned short *data)
{

unsigned short *p, *d, w;
long i,j;
if ((p=(unsigned short *)_get(s))!=-1)
{

d = data;
for (i=0; i<15; i++)
{

for(j=7; j>=0; j--)
*d++ = (((*p>>j)&0x01)==0x01)?COLOR:BLACK;

for(j=15; j>=8; j--)
*d++ = (((*p>>j)&0x01)==0x01)?COLOR:BLACK;

p++;
}

}
else
{

for (d=data, i=0; i<2*16*16; i++)
*d++ = BLACK;

}

}

Memory Allocation

There are three systems of memory allocation: a ROM-based version (malloc), a RAM-based version
(malloc2), and a high-speed RAM-based version (malloc3).

2-22 Kernel Library

Run-Time Library Overview

There is a bug in the malloc system in which the area allocated cannot be completely released in free().This
bug was fixed in malloc2. . . . (Since malloc is part of the ROM, it cannot be corrected and is left in order to
maintain compatibility.) malloc3, which improved upon the speed of malloc2, was added in Library 4.0.

Note: Note: Note: Note: all of these functions allocate memory blocks based on first fit rather than best fit. In some cases,
developers may wish to write their own memory allocation routines.

Table 2-33: Memory Card allocation functions

Name LIBAPI function LIBC/C2 function

Version which calls ROM routine InitHeap() malloc()
(malloc system) calloc()

realloc()
free()

RAM-based version InitHeap2()
(malloc2 system) malloc2()

realloc2()
calloc2()
free2()

High-speed RAM-based InitHeap3()
version (malloc3 system) malloc3()

realloc3()
calloc3()
free3()

The table below shows a performance comparison between the three memory allocation systems, in terms
of speed of operation and size of code.

Table 2-34: Performance comparison between memory allocation functions

Speed
Code size Slow Fast

Large malloc2 system
malloc3 system

Small malloc system

Run-Time Library Overview

Chapter 3:
Standard C Library

Table of Contents

Overview 3-3
Library and Header Files 3-3

3-2 “Standard” C Library

Run-Time Library Overview

“Standard” C Library 3-3

Run-Time Library Overview

Overview

The C standard libraries are a subset of the K & R-based C standard libraries, including functions such as
character functions and memory operations .

There are two versions of the standard C libraries:

• libc accesses library routines in the kernel ROM. This provides a small size advantage, since no
additional code needs to be linked with your application. However, libc routines are slower than libc2
routines, because ROM code is not cacheable.

• libc2 links with your application. It provides a speed advantage, because the code is cacheable.

Library and Header Files

The standard C library files are libc.lib and libc2.lib . To use standard C routines, you must link
with one of these files.

The following header files declare the routines in the C standard library. The Run-time Library Reference
describes the functions in the standard C library and which header file must be included for each one.

Table 3–1: Header Files

abs.h
assert.h
convert.h
ctype.h
malloc.h
memory.h
rand.h
setjmp.h
stdarg.h
stddef.h
stdlib.h
strings.h
qsort.h
sys/types.h

3-4 “Standard” C Library

Run-Time Library Overview

Run-Time Library Overview

Chapter 4:
Math Library

Table of Contents

Overview 4-3
Library and Header Files 4-3

Floating-Point Numbers 4-3

Error Processing 4-3
Error Types 4-3
Internal Processing at the Time of an Error 4-4
Error Event 4-4
Error Variable 4-4

4-2 Math Library

Run-Time Library Overview

Math Library 4-3

Run-Time Library Overview

Overview

The Math library provides a floating point operation package and K & R-based standard C library math
functions.

Library and Header Files

To use the Math library file, your application must link with the file libmath.lib .

Your source code should include the header files libmath.h and limits.h .

Floating-Point Numbers

The math library supports IEEE754 standard single-precision floating-point numbers (float) and double-
precision floating-point numbers (double). It also has an internal floating-point arithmetic operation package.

The PlayStation hardware doesn’t support float and double operations directly, because the CPU has no
floating-point coprocessor. By linking mathlib with your application, it is possible to use the float and double
types.

Table 4–1: Float Format

Item Specification

Size 4 bytes
Significant digit count 6 decimal digits
Overflow limit value 2.0**128 = 3.4e38
Underflow limit value 0.5**126 = 2.2e-38

Table 4–2: Double Format

Item Specification

Size 8 bytes
Significant digit count 15 decimal digits
Overflow limit value 20**1024 = 1.8e308
Underflow limit value 0.5**1022 = 2.2e-308

Error Processing

Events are used to report errors in floating-point operations. Error status recording by C standard style
external variables is also supported.

Error Types

Math library functions are used to test the range of arguments. These tests are performed on the functions
whose specifications cover the range of argument values. If an inappropriate value is detected, the
response “area error” (EDOM) is generated.

If the results exceed the area of expression in an application which uses internal functions and arithmetic
operators, the response “range error” (ERANGE) is generated.

4-4 Math Library

Run-Time Library Overview

Internal Processing at the Time of an Error

For any area and range errors, notice is given by the assignment of an error code to an event and external
variables.

The result of an operation is an unsigned infinite value, so that operation can be carried on wherever
possible. The following are positive infinite bit patterns:

• Floating-point value: 0x7F800000
• Double-precision value: 0x7FF0000000000000

The following are negative infinite bit patterns:
• Floating-point value: 0xFF800000
• Double-precision value: 0xFFF0000000000000

The following are return values for division by zero:
• NaN
• Floating-point value: 0x7FFFFFFF
• Double-precision value: 0x7FFFFFFFFFFFFFFF

or
• -NaN
• Floating-point value: 0xFFFFFFFF
• Double-precision value: 0xFFFFFFFFFFFFFFFF

(NaN is not a numerical value, but a bit pattern reserved by the operation subroutine to report an error. A
normal double-precision variable does not store the same bit pattern as NaN. Thus, subjecting NaN to
floating-point operation cannot provide correct results.)

Error Event

An error in a math library function causes an event with cause descriptor SwMATH. Thus, an overflow and
division by zero can be detected and a corresponding error generated.

Error Variable

The variable math_errno for storing error codes is defined in libmath.lib and declared as extern in the
header file libmath.h ; it is initialized to zero. When an error arises in the library, however, one of the
constants EDOM or ERANGE (defined in sys/errno.h) is stored in math_errno. This variable is not
automatically reset to zero; you must explicitly reset it after error processing.

Table 4–3: Error Notificaton

Error math_errno Event value Cause descriptor Type

Area error EDOM SwMATH EvSpEDOM
Range error ERANGE SwMATH EvSpERANGE

Run-Time Library Overview

Chapter 5:
Memory Card Library

Table of Contents

Overview 5-3
Library and Header Files 5-3

Memory Card 5-3
Hardware 5-3
Events 5-3

BIOS 5-4
Testing for Card Presence and Testing Logical Formats 5-4
Unconfirm Flags 5-4
Card Test 5-5

File System 5-6

Realtime Access 5-7

Rules for Use of Memory Card 5-7
Abnormal Processing 5-8
Terminology 5-8
File Names 5-8
File Headers 5-8
Written Data Contents Protection 5-9
Handling Communications Errors 5-10

Other 5-10
Coding Notes 5-10
Known Bugs 5-10

5-2 Memory Card Library

Run-Time Library Overview

Memory Card Library 5-3

Run-Time Library Overview

Overview

The Memory Card library provides functions which make smooth access to the Memory Card in a realtime
environment possible. It also performs data reading and writing and calls the Memory Card BIOS service.

Library and Header Files

Programs that use the Memory Card library must link with the file libcard.lib .

The Memory Card library has no unique header file. The header files libapi.h and sys/file.h must be
included.

Memory Card

The Memory Card is a memory device that saves data after a reset or power-off. The Memory Card may be
inserted or removed while the power is on.

Hardware

The basics of Memory Card hardware are as follows:

Table 5-1: Memory Card Specifications

Capacity 120 Kbytes at format
(accessed in 128-byte sectors)

Communication Configuration Synchronous serial communication sharing controller port
Access Speed 1. Cannot access for 20 ms after reading 1 sector

2. Maximum continuous reading speed is about 10 Kbyte/sec.
Other May insert/remove without turning power off

100,000 reads guaranteed

Events

The Memory Card library uses the following two source descriptors. Also, the Memory Card library does not
use internal event descriptors.

Table 5-2: Events Associated with the Memory Card

Source descriptor Event class Meaning

HwCARD EvSpIOE Processing complete
EvSpERROR Card no good
EvSpTIMOUT No card

SwCARD EvSpIOE Processing complete
EvSpERROR Card no good
EvSpTIMOUT No card
EvSpNEW New card or uninitialized card

Note: SwCARD/EvSpNEW has one of two meanings, depending on the function that issued the input/output
request.

Automatic clearing of events relating to HwCARD

Events related to the descriptor HwCARD are automatically cleared by every vertical sync interrupt.

5-4 Memory Card Library

Run-Time Library Overview

Functions which wait for a vertical interrupt, such as libgpu VSync(), etc., interpose themselves to perform
event generation tests, and so run the danger of not being able to detect event generation.

BIOS

Services such as checking the Memory Card connection, logical format testing, accessing in sector units (128
bytes), etc., are provided by the BIOS.

In order to support concurrent controller reading and the accessing of two AB connectors, the BIOS accesses
the card at each of two vertical blanks. One sector, 128 bytes of data, may be read in 1 access. Access using
BIOS is as follows:

Table 5-3: Memory Card BIOS

Start Timing After a vertical blanking interrupt, controller reading occurs, the card
connection is checked and then the hardware is checked.
Sending and receiving of data is driven by receiving interrupts in units
of bytes.

Effective Speed Effective speed 30 sectors/sec = 3.75 Kbyte/sec
CPU Load 2.5% when reading continuously from 2 cards

3.2% when writing continuously to 2 cards

Testing for Card Presence and Testing Logical Formats

The procedure for testing in the BIOS for the presence of a Memory Card and for logical format is as follows:

1) Test for card presence using _card_info().

If an IOE event has occurred, a card whose connection has already been confirmed remains connected.
Go to (5).

If a NEWCARD event has occurred, a card which was not confirmed by _card_clear() after connection is
connected. Go to (2).

If a TIMOUT event has occurred, no card is connected. No more operations are necessary. A
communication error is possible, so perform a retry.

2) Perform a confirmation operation using _card_clear().

Usually there is no failure. If a failure occurs, either the card was removed or a communication error
occurred. In the case of failure, return to (1) and perform a retry.

3) Test logical format using _card_load().

If an IOE event has occurred, formatting is completed. Go to (5).

If a NEWCARD event has occurred, formatting has not been performed. Go to (4).

In other cases, either the card was removed or a communication error occurred. In these cases, return to
(1) and perform a retry.

4) Perform logical format using format().

If formatting ends normally, go to (5). In other cases, either the card was removed or a communication
error occurred. In such cases, return to (1) and perform a retry.

5) Perform input/output using the file system.

Unconfirm Flags

Inside the card there is a bit switch called the unconfirm flag. This bit is set if the card is inserted in its slot, and
is cleared by _card_clear(). This flag provides a means for detecting card replacement. In order to prevent

Memory Card Library 5-5

Run-Time Library Overview

erroneous access, the default is that data cannot be read from or written to a card with this flag set. Any
attempt to read or write causes an error. The flag may be accessed after explicitly clearing it with _card_clear().

If you want to create an error for testing, etc., the _new_card() function masks the default test parameters in
order to ignore the unconfirmed flag and allow access. This is a function which does not require normal access
through the filesystem, so it is different from other libcard functions.

Card Test

Here is a list of sample code for testing cards. See the following section “File System” for the events used.

unsigned long ev0,ev1,ev2,ev3;
unsigned long ev10,ev11,ev12,ev13;

main()
{

ev0 = OpenEvent(SwCARD, EvSpIOE, EvMdNOINTR, NULL);
ev1 = OpenEvent(SwCARD, EvSpERROR, EvMdNOINTR, NULL);
ev2 = OpenEvent(SwCARD, EvSpTIMOUT, EvMdNOINTR, NULL);
ev3 = OpenEvent(SwCARD, EvSpNEW, EvMdNOINTR, NULL);
ev10 = OpenEvent(HwCARD, EvSpIOE, EvMdNOINTR, NULL);
ev11 = OpenEvent(HwCARD, EvSpERROR, EvMdNOINTR, NULL);
ev12 = OpenEvent(HwCARD, EvSpTIMOUT, EvMdNOINTR, NULL);
ev13 = OpenEvent(HwCARD, EvSpNEW, EvMdNOINTR, NULL);

PadInit(0);
InitCARD(1);
StartCARD();
_bu_init();

test_card();
}

test_card()
{

long ret;

_card_info(0x00); /* deliver a TEST CARD request */
ret = _card_event(); /* get the result */
if(ret==1 || ret==2)) /* NO CARD or Communication error */

goto skip;
if(ret==3) { /* if NEWCARD, call _card_clear() */

_clear_event();

_card_clear(0x00); /* clear NEW CARD FLAG */
ret = _card_event(); /* wait events */

}
_clear_event();
_card_load(0x00); /* deliver a TEST FORMAT request */

if(ret==3) { /* if NEWCARD, call format() */
/* put a message to the operator */
ret = format("bu00:"); /* synchronous function */
if(ret==1)

FntPrint("\nDONE\n");
else { /* error happened in format() */

FntPrint("\nERROR IN FORMATTING\n");
goto skip;

}
}
/* put i/o requests */
return 1;

skip:
return 0;

}

_card_event()

5-6 Memory Card Library

Run-Time Library Overview

{
while(1) {

if(TestEvent(ev0)==1) { /* IOE */
return 0;

}
if(TestEvent(ev1)==1) { /* ERROR */

return 1;
}
if(TestEvent(ev2)==1) { /* TIMEOUT */

return 2;
}
if(TestEvent(ev3)==1) { /* NEW CARD */

return 3;
}

}
}

_clear_event()
{

TestEvent(ev0);
TestEvent(ev1);
TestEvent(ev2);
TestEvent(ev3);

}

_card_event_x()
{

while(1) {
if(TestEvent(ev10)==1) { /* IOE */

return 0;
}
if(TestEvent(ev11)==1) { /* ERROR */

return 1;
}
if(TestEvent(ev12)==1) { /* TIMEOUT */

return 2;

if(TestEvent(ev13)==1) { /* NEW CARD */
return 3;

}
}

}

_clear_event_x()
{

TestEvent(ev10);
TestEvent(ev11);
TestEvent(ev12);
TestEvent(ev13);

}

File System

The file system as it relates to the Memory Card is as follows:

Table 5-4: Memory Card File System

Device Name buX0X: Connector number (0 or 1)
File Name ASCII characters, up to 21 characters
Directory Structure None
Control Unit: Slot 8 Kbyte (64 sectors) → file size unit
Number of Slots 15/card (max. no. of files = 15)
Automatic Replacement Sector Function 20 replacement sectors/card

Memory Card Library 5-7

Run-Time Library Overview

Kernel library services which request a file name as an argument may be applied to all bu devices.

File size is given as a parameter during file creation. Afterwards the file size cannot be changed. Size is in units
of slots. During file creation, the file system must combine any fragmented memory regions left after deleting
files and guarantee the needed capacity.

Example: File Deletion and Creation
/* Driver initialization */
InitCARD(0); /* Does not coexist with controller */
StartCARD();
_bu_init();

/* Delete file L01 on the card in Port A */
printf("delete\n");
delete("bu00:L01");

/* Create new file L01, 2 slots long, on card in Port A */
printf("create\n");
if((fd=open("bu00:L01",O_CREAT|(2<<16)))==-1)

printf("error\n");
close(fd);
/* Always close once after creating */

Realtime Access

Device bu assumes operation under a realtime environment and supports non-blocking mode. If the macro
0_NOWAITin sys\file.h is used when open, read() and write() end as soon as an input/output request is
registered in the driver. Completion of input/output is reported by posting an event.

A slot accepts only one input/output request for checking access speed.

Example: Asynchronous Access

_clear_event() and _card_event() have the same contents as the previous example

sample()
{

long fd,i,ret;

fd = open("bu00:L01",O_WRONLY|O_NOWAIT);
printf("open=%d\n",fd);
for(i=0;i<50;i++) {

clear_event();
while((ret = write(fd,data,384))!=0)

;
printf("write=%d\n",ret);
ret = _card_event();
printf("event=%d\n",ret);
if(ret==1)
break;

}
close(fd);

}

Rules for Use of Memory Card

The Memory Card is a resource shared by many applications, so use it according to the rules for sharing.

5-8 Memory Card Library

Run-Time Library Overview

Abnormal Processing

No standard screen or message is set up to deal with cases of insufficient capacity or detection of an
unformatted card while executing an application. Each application should have an abnormal processing screen
or message designed for it.

Keep the following points in mind during this design process.

1) Always query the user (game-player) when performing logical initialization. Do not use the automatic
initialization function.

2) When a card is not detected, and it is determined that this may limit future operation, always notify the
user (game-player). If possible, ask the user whether it is okay to continue processing.

Terminology

The unit for required memory capacity in the product catalog is block. This is equivalent to the previously-
noted slot (8 Kbytes).

File Names

Use the following structure for file names:

Table 5-5: Memory Card File Names

Bytes Contents Notes

0 Magic Number Always 'B'
1 Region Japan: 'I' North America: 'A',

Europe: 'E'(*1)
2-11 Title SCE product number (*2)
12-20 User/Public Use only non-0x00, 0x2a(*), 0x3f(?) ASCII

End with 0x00

*1: None are checked by the system
*2: The first disk for multi-disk titles

The SCE product number is decided by our Release Planning Committee (about three weeks before the
master is released), and reported to the responsible parties in each company's sales department. Based on
this, please decide the following.

Example: If the product code is SLPS-00001, the file name's first 12 characters are BISLPS-00001. Always
add zeros to make the numerical portion 5 digits.

File Headers

Put the following headers at the start of each file.

Table 5-6: Memory Card File Header

Item Size (bytes)

Header 128
Magic number 2 (always “SC”)
Type (see table below) 1
No. of slots 1
Text name 64 (Shift JIS, *1)
Pad 28 (All packed in 0x00)
CLUT 32
Icon image (1) 128 (16 x 16 x 4 bits)

Memory Card Library 5-9

Run-Time Library Overview

Icon image (2) 128 (Type:0x12, 0x13 only)
Icon image (3) 128 (Type:0x13 only)
Data Varies (128Byte x N)

*1: Non-kanji and primary standard kanji only, full-size 32 characters. The end of the character
string terminates at 0x00.

Table 5-7: Type Field

Type Number of icon images
(automatically replaced animation)

0x11 1
0x12 2
0x13 3

Written Data Contents Protection

Applications should take precautions to prevent damage to data in the event of a reset or card removal or
power off during data writing.

For example, you can set things up so that data is written in duplicate. Writing is performed reciprocally and an
individual checksum is added for the final byte of each sector. Test checksum when reading, and use the other
data set if an error is detected.

Warning: the file system replacement sector function is only effective on card memory writing errors. The
writing contents guarantee function is not supported by hardware or library.

Example: Sector Checksum
/*
* test check sum for 128byte block
* return 1:OK
* 0:NG
*/
_test_csum(buf)
unsigned char *buf;
{

long i;
unsigned char c;

c = 0x00;
for(i=0;i<127;i++)

c ^= *buf++;
if(*buf==c)

return 1;
return 0;

}

/* set check sum to the last byte of 128byte block */
void _set_csum(unsigned char *buf)

{
long i;
unsigned char c;

c = 0x00;
for(i=0;i<127;i++)

c ^= *buf++;
*buf = c;

}

/* sample data strucure */
struct SDB {

char name[8];
long size, attr, sector, mode;

5-10 Memory Card Library

Run-Time Library Overview

}

/* common load buffer */
unsigned char load_buf[1024];

/* get data from Memory Card with checksum test */
int get(long num, struct SDB *data)
{

long i,fd;

if((fd=open("bu00:L01",O_WRONLY))<0)
return 0;

memcpy(&load_buf[0],data,sizeof(struct SDB));
set_csum(&load_buf[0]);
i = write(fd,&load_buf[0],128);
close(fd);

return (i==128)?1:0;
}

/* get data from Memory Card with checksum test */
int get()
{

long i,fd;

if((fd=open("bu00:L01",O_RDONLY))<0)
return 0;

if(read(fd,&load_buf[0],1024)!=1024) {
close(fd);
return 0;

}

for(i=0;i<8;i++)
if(_test_csum(&load_buf[128*i])==1)

memcpy(&data[i],&load_buf[128*i],sizeof(struct SDB));
else

memset(&data[i],0xff,sizeof(struct SDB));
close(fd);
return 1;

}

Handling Communications Errors

There are cases in which access fails due to static discharge or power source noise even though the card
connection and access program are normal. Test for the presence or absence of a card, writing and reading
with retry (at 1-2 second intervals).

Other

Coding Notes

Consider the following point when coding * call _new_card() before _card_info() and suppress EvSpNEW
events.

Known Bugs

• If read() or write() is issued immediately after open(), an error occurs. When creating a file using open(),
make sure you call close() to close the file.

• In asynchronous access using read(), the file pointer is updated by 128 bytes too few. It must be corrected
using lseek().

• For Memory Card A (facing left), access to controller A (facing left) fails during a frame in which a timeout
event occurred, and all buttons go into release status. (Bug fix in Library Ver. 3.7)

Memory Card Library 5-11

Run-Time Library Overview

If requesting asynchronous access to card A, the problem does not occur if the controller releases all the
buttons, even if this was the user’s (game-player’s) intent, or set it to use card B (facing right).

Example: The Problem Occurs if a Card Is Not Set in Slot A
vertical sync

 _card_info(0x00) etc. requests
 async access
↓ pad = PadRead(); /•Normal•/

vertical sync
 Start comm to card A
↓ pad = PadRead(); /•Normal•/

vertical sync
 Card A timeout event occurs
 pad = PadRead(); /•Controller A•/
↓ /•All buttons released•/

vertical sync
↓ pad = PadRead(); /•Normal•/

vertical sync

5-12 Memory Card Library

Run-Time Library Overview

Run-Time Library Overview

Chapter 6:
Extended Memory Card Library

Table of Contents

Overview 6-3
Library and Header Files 6-3
Features of the Library 6-3
Checking Memory Card Status 6-3
Reading/Writing Data 6-3
Detecting a New Card 6-3

Libcard and the Card BIOS 6-4

Use with Multi Tap 6-4

The Memory Card 6-4
Hardware 6-4

Rules for Using the Memory Card 6-5
Handling Irregularities 6-5
Terminology 6-5
File Names 6-5
File Header 6-6
Saving Write Data 6-6

6-2 Extended Memory Card Library

Run-Time Library Overview

Extended Memory Card Library 6-3

Run-Time Library Overview

Overview

The high-level Memory Card library (libmcrd) provides a convenient interface for using Memory Cards installed
in the PlayStation.

Library and Header Files

Programs that use extended Memory Card library services must link with the file libmcrd.lib . Internally,
libmcrd uses libcard.lib and libapi.lib , so these libraries must also be linked.

Source files must include the header file libmcrd.h .

Features of the Library

• Check for presence of Memory Card, check to see if Memory Card is uninitialized, and check for
Memory Card invalid state

• Write data to Memory Card
• Read data from Memory Card
• Logical initialization (formatting) of Memory Card
• File deletion
• File creation
• Get directory information

Checking Memory Card Status

The Memory Card can be inserted or removed when the PlayStation is on. Thus, the user application must be
designed to take into account the fact that the Memory Card may be inserted or removed at any time.

Libmcrd provides the MemCardAccept() function to determine if a card has been inserted or removed. The
status of the card can be obtained by this function when the card is installed.

Reading/Writing Data

When data is being written to or read from the Memory Card, communication errors may occur. Libmcrd
internally performs retries when communication errors occur during data reads, so user applications do not
need to include error handling routines. However, communication errors during data writes are not handled by
the library and will need to be handled by the user application, (e.g. by re-reading the written data for
verification).

Detecting a New Card

A Memory Card that has just been inserted is treated as a new card. Because the new card may be
unformatted or invalid, the library is designed so the card cannot be accessed until MemCardAccept() is
executed.

If the new card was detected with MemCardAccept(), however, it is not necessary to execute
MemCardAccept() again, as the various processes such as format checking were already performed.

If a new card is inserted, any function other than MemCardAccept() (such as MemCardExit() or
MemCardReadFile()) will return "New card detected" as its result no matter how many times it is called.

6-4 Extended Memory Card Library

Run-Time Library Overview

Libcard and the Card BIOS
Libmcrd uses libcard and card BIOS functions and resources such as the HwCARD and SwCARD events.
Consequently, user applications cannot directly use libcard or the card BIOS.

If a user application needs to perform an operation that cannot be implemented using libmcrd, the application
must implement all Memory Card operations which use libcard and the card BIOS.

Use with Multi Tap

When switching access between multiple Memory Cards connected to one Multi Tap, call
MemCardAccept() every time you access a different Memory Card. The reason for this is that in libmcrd,
each port on the PlayStation unit has only one directory information buffer. When multiple Memory Cards
are connected to one Multi Tap, only one directory information can be controlled

The Memory Card
The Memory Card is a storage device that retains data even after the PlayStation has been powered off or
reset.

Memory Cards can be inserted or removed while the PlayStation is turned on.

Hardware

The specifications for the Memory Card hardware are shown below.

Table 6-1: Memory Card Specifications

Capacity 120 KBytes (formatted)
(Accessed in 128 byte sectors)

Communication Synchronous serial port also serving as a controller port
Access speed (1) No access for 20 msec after writing one sector

(2) Approximately 10 KBytes/sec maximum continuous read
Other Can be inserted or removed without turning power off. Guaranteed for

100,000 writes

Extended Memory Card Library 6-5

Run-Time Library Overview

Rules for Using the Memory Card
The Memory Card is a resource that is shared by multiple applications. Therefore the Memory Card should be
used according to a common set of rules.

Handling Irregularities

There is no required screen or message to be output when a card runs out of memory during application
execution or when an unformatted card is detected (i.e., there is no requirement that the display be the same
as OSD). Rather, these situations can be customized according to the application. Nevertheless, the following
points should be taken into consideration.

• The user should be notified before performing a logical initialization. Initialization should not be
performed automatically.

• The user should be notified when no card is detected but one is expected. If possible, the user should
be prompted to insert a card.

Terminology

In the product catalogs, the required memory capacity is expressed in terms of "blocks", where one block is
8192 bytes.

File Names

File names should be assigned as follows:

Table 6-2: Memory Card Filenames

Byte DescriptionNotes

0 Magic number Always 'B'
1 Location 'I' for Japan, 'A' for North America, 'E' for

Europe (*1)
2-11 Title SCE product number (*2)
12-20 User defined Use ASCII characters excluding 0x00, 0x2a (*),

0x3f (?).
End with 0x00

*1: Not checked by the system
*2: If multi-disc title, use the product number from the first disc.

The SCE product number will be determined at a preliminary sales meeting held by us (approximately three
weeks before submission of master) and we will notify the business contact of the subject company. Please
use the product number in the following manner.

For example, if the product code is “SLPS-00001”,

The first 12 characters of the filename would be BASLPS-00001".

The numerical portion must be five digits padded with zeros.

6-6 Extended Memory Card Library

Run-Time Library Overview

File Header

Please use the following header at the beginning of each file:

Table 6-3: Memory Card File Header

Item Size (bytes)

Magic number 2 (always 'SC')
Type (see table 6-4) 1
Number of blocks 1
Name 64 (Shift-JIS *1)
pad 28 (All packed at 0x00)
Clut 32
Icon image (1) 128 (16x16x4 bits)
Icon image (2) 128 (Type==0x12,0x13 only)
Icon image (3) 128 (Type==0x13 only)
Data Variable (128 bytes x n)

*1: Non-kanji and Level 1 kanji only. Full-width, 32 characters.
The end of the character string terminates at 0x00.

Table 6-4: Type Field

Type Number of icon images
(Animation through automatic replacement)

0x11 1
0x12 2
0x13 3

Saving Write Data

The application must handle cases where data is destroyed because the unit was reset, the card was
removed, or the power was turned off during a data write operation.

Example of how to save data

Write data twice, writing to one data set and then to the other. At the end of each sector add a checksum for
the sector. Do a checksum test when reading the sectors. If an error is detected, use the other data set.

Caution:

The replacement sector feature of the filesystem is valid only for memory write errors in the Memory Card.
There is no hardware or library support for saving write data contents.

Run-Time Library Overview

Chapter 7:
Data Compression Library

Table of Contents

Overview 7-3
Library and Header Files 7-3

Compressor and Decompressor Functions 7-3

MDEC 7-3

Compression of Image Data 7-4
DCT (Discrete Cosine Transform) 7-4
BVQ (Block Vector Quantization) 7-5
Huffman Encoding 7-6

DCT (Discrete Cosine Transform) 7-6
Basic Principles 7-6
Methods Supported 7-7
Asynchronous Decoding 7-8
Callback 7-8
Playing Movies with the CD-ROM 7-9
Direct Transmission and Texture Transmission 7-10
Encoding by Means of the Local Environment 7-10

BVQ (Block Vector Quantization) 7-10
CLUT Vector Quantization 7-10

Huffman Encoding 7-11

Compression of Sound Data 7-11

7-2 Data Compression Library

Run-Time Library Overview

Data Compression Library 7-3

Run-Time Library Overview

Overview

The data compression library (libpress) is a low-level function library for compressing (encoding) and
decompressing (decoding) image and sound data.

Image data that can be compressed and decompressed includes:

• Single images.
• Frames from a video sequence that have been compressed into the PlayStation MDEC format.

The MDEC is a customized portion of the PlayStation hardware specializing in image decompression.

Three methods of compressing images are available:

• DCT (Discrete Cosine Transform) can be used to compress direct color images
• BVQ (Block Vector Quantization) likewise combines the number of colors in the direct color image

together to create 256/16 colors
• Huffman Encoding (fixed codebook) reversibly compresses 4 bit index colors.

For compressing sound data, the library uses ADPCM to compress 16-bit straight PCM to about 1/4. The
compressed sound data can be used as SPU sound source data.

Library and Header Files

The filename of the data compression library is libpress.lib ; to use library services, you must link with
this file. The library header is libpress.h ; programs that call library routines must include this file.

Compressor and Decompressor Functions

Compressor functions compress image and sound data in main memory, and return the results to main
memory. Compressor functions are used when data needs to be compressed dynamically inside an
application, and when data is generated off-line by remote activation from the authoring environment. In
fact, the local environment has a built-in DCT circuit which can be used to carry out high-speed
compression of images by means of DCT.

Decompressor functions expand compressed data in real time. Note that in some cases, compressor
functions produce data formats that are processed without conversion but rather via local environment
hardware, like BVQ. Data in these formats cannot be handled by decompressor functions.

MDEC

The PlayStation provides a specialized data display engine, the MDEC (Motion DECoder), for high-speed
image data expansion. MDEC expands compressed data in main memory and returns the result back to
main memory. This result is transferred to the frame buffer display area, and displayed as an image.

7-4 Data Compression Library

Run-Time Library Overview

Figure 7-1: Data Expansion and Display by MDEC

GPUMDECCPU

FrameBuffer

CDROM

BS RunLevel MacroBlock

BitStream
Main Memory

The main bus access which was saved to the main memory is carried out by time sharing with the CPU
and other peripheral equipment and can perform expansion processing in parallel with the program and
frame buffer transfer, etc.

Compression of Image Data

Algorithms used to compress image data vary according to the type and intended use of the data.

DCT (Discrete Cosine Transform)

DCT is the compression method used in JPEG/MPEG. It compresses direct-color (24-bit/16-bit) images
with a high efficiency ratio. The compression is lossy, but the compression ratio can be controlled at will.
The compression ratio specified is usually between 5% and 10%.

In DCT, the basic processing unit is a 16x16 24-bit direct-color image called a macroblock. All the images
are broken down into macroblocks before being compressed into bitstream format. The output of
decompression is also in macroblock units.

For example, when 320x240 image data is broken down into a large number of 16x16 macroblocks, as
shown below, they are each compressed into bitstreams.

Data Compression Library 7-5

Run-Time Library Overview

Figure 7-2: 320x240 Image Breakdown

Macroblock Generated image

R

G

B
16

320

240

16

Figure 7-3: DCT Processing

Macroblock (16x16 RGB rectangular area)

Bitstream

compression

Macroblock (16x16 RGB rectangular area)

decompression

BVQ (Block Vector Quantization)

BVQ carries out vector quantization on direct-color images, combining colors to give a total of 256 or 16
colors, and generating 8-bit or 4-bit index-color images.

Index-color images are expressed as a two-dimensional array consisting of the CLUT (Color Look Up
Table) which gives the actual brightness values, and the index to the CLUT.

Index-color images allow a slightly greater total reduction in data volume than the equivalent direct-color
images. For example, if the brightness value of the individual pixels in a picture is 16 or below, the index
only takes 4 bits. The volume of an index-color image can therefore be compressed to 25% of the volume
of a 16-bit direct-color image.

4-bit/8-bit index-colors can be used as 4-bit/8-bit texture-patterns, doing away with the need for a special
decompression filter.

In BVQ, the image is split up into several small areas when compression is carried out, and vector
quantization is carried out on each small area, allowing the number of colors to be reduced by combination.
At this stage, vector quantization is carried out again on the CLUT generated for each small area, so the
number of CLUTs can also be reduced by combination. In this case, each pixel of the image data is
indexed doubly: once by the CLUT number held by the small area to which the pixel belongs, and by the
index value for that CLUT.

Vector quantization in which the index reference is carried out in stages in this way is called Block Vector
Quantization.

7-6 Data Compression Library

Run-Time Library Overview

Huffman Encoding

DCT and BVQ compression and decompression are lossy. Therefore, a Huffman encoding function is
provided for reversible compression of 4-bit index colors. The Huffman encoding is the classical type in
which the codebook is generated once at the beginning.

Huffman encoding compresses data by assigning codes with a short code length (Huffman codes) in order,
starting with the pixel values (index values) which appear most frequently. The table showing the actual
pixel values and their corresponding Huffman codes is called the codebook.

The compression ratio for Huffman code varies according to the nature of the source image. Generally, the
greater the polarization of the pixel values appearing, the higher the compression ratio will be.

The following table summarizes the compression and decompression methods:

Table 7-1: Compression and Decompression Algorithms

DCT BVQ Huffman

Type Lossy Lossy Loss-less
Input format 24-bit/16-bit 24-bit/16-bit 4-bit
Output format BitStream 4-bit/8-bit BitStream
Compression ratio From 10% to 5% From 50% to 25%

DCT (Discrete Cosine Transform)

Basic Principles

Compression

DCT belongs to the category of linear transforms generally termed direct transforms, and can be thought of
as a kind of frequency transform.

When DCT conversion is carried out on an NxN rectangular image, the low-frequency constituents of that
image are concentrated in one place. Compression of the data is achieved by Huffman-encoding the
results. In short, DCT is a method for making data compression easier, and does not, in itself, reduce the
data size. The actual data compression is done by the Huffman encoding.

When DCT conversion is carried out on an ordinary image, the frequency constituents are concentrated in
the low region, so after conversion, most of the constituents are at 0. This means that a much higher
compression ratio can be achieved than if the image had been Huffman-encoded directly. This type of
Huffman-encoding is called VLC (Variable Length Coding).

The byte/word boundary of VLC-processed data is logically meaningless, and the data is expressed simply
as a stream of bits. This is known as a bitstream.

The basic unit for all the processes in this sequence is a 16x16 rectangular area. This unit is known as a
macroblock. Accordingly, in DCT compression, macroblocks can be input, compressed, and converted to
bitstream format.

After the image has been subjected to DCT conversion, quantization is carried out all at once in given units.
The compression ratio can be controlled by controlling the quantization step. Generally speaking,
broadening the quantization step improves the compression ratio.

Decompression

DCT decompression is carried out in the reverse order to that of compression. That is to say, once VLC
decoding has been carried out on the captured bitstream, the result is subjected to IDCT (Inverse Discrete
Cosine Transform) to restore the original image.

Data Compression Library 7-7

Run-Time Library Overview

The decompression of the bitstream therefore consists of two passes:

1. VLC decoding
2. IDCT

Methods Supported

Compression

In the case of 24-bit color data, intermediate data is output in a format (run level) where the run-length is
compressed once DCT conversion has been carried out. This data is subjected to VLC, and a bitstream is
output. The compression ratio is controlled by specifying the quantization step in the process generating
the run level.

When the actual compression is carried out, the run level (the intermediate data) is not output.

Figure 7-4: DCT Compression

24bit 16x16 macroblock

run-level (intermediate result: not output)

compression ratio setting:
Lossy conversion

Huffman encoding:
Lossy conversionbitstream

Macroblock encoding is performed in the following fashion:

• Performs CSC (Color Space Conversion) on the RGB macroblock to convert the Y, Cb and Cr
elements. Y is the brightness element and Cb, Cr are color difference elements.

• Within the YCbCr macroblock, divides Y into four 8x8 blocks. Thins out Cb, Cr and arranges them as
8x8 macroblocks. As a result, the YCbCr macroblock is divided into six blocks (Y0, Y1, Y2, Y3, Cb,
Cr).

• Converts each block by DCT (Discrete Cosine Translation).
• Quantizes (divides) each element of the block as a fixed value.
• Lists each element of the block in zig-zag order.
• Run length compresses each element of the block and converts to run level.
• Performs VLC (Huffman encoding) on the run level and creates BS.

Decompression is carried out by operations which are the reverse of those used in compression.

The image data handled in DCT is 24-bit direct-color data, but the bitstream produced by compressing this
data can be decompressed in either 16-bit or 24-bit mode. The mode can be selected when
decompression is carried out.

In the case of a 16-bit pixel, the On/Off status of the first bit (the STP bit) can also be selected when the
data is decompressed.

Figure 7-5: DCT Decompression

bitstream

run level

VLC decoding

Function name: DecVLC()

24bit 16x16 macroblock

IDCT

Function name:
DecDCTin()/DecDCTout()

7-8 Data Compression Library

Run-Time Library Overview

MDEC performs decompression from runlevel to macroblock.

The function DecDCTvlc() is used for VLC decoding.

Because IDCT processing takes time, a separate piece of hardware (the MDEC) performs the processing in
parallel with the CPU. The function DecDCTin() is therefore provided for transferring the data to the MDEC,
and the function DecDCTout() is provided for receiving the decompressed data.

Asynchronous Decoding

The MDEC and the CPU work in parallel, sharing the main memory.

The function DecDCTin() ìsews togetherî the intervals in which the CPU provides the image sections and
transmits the run level to the MDEC in the background.

In the same way, the function DecDCTout() transfers decompressed macroblocks to the main memory in
the background.

The data decompressed by the MDEC is always transmitted to the frame buffer, via the main memory.
When this is done, the exchange between the MDEC and the main memory can be carried out
asynchronously. Accordingly, one frame's worth of (640x240) images can be decompressed without
creating a frame's worth of buffer in the main memory.

In the example below, the image is split up into long narrow 16x240 (15-macroblock) areas (slices), and the
data for each slice is received and transmitted separately.

Example:
extern unsigned long *mdec_bs; /*bitstream*/
extern unsigned long *mdec_rl; /*run level (intermediate data)*/

extern unsigned short mdec_image[15][16][16];
/*decode macroblock*/

DecDCTvlc(mdec_bs, mdec_rl); /*VLC decompression*/
DecDCTin(mdec_rl, 0); /*transmit run level*/
for (rect.x = 0; rect.x < width; rect.x += 16)

{
DecDCTout(mdec_image, slice); /*receive*/
LoadImage(&rect, mdec_image); /*transfer to frame buffer*/

}

The bitstream transmitted by one execution of the function DecDCTin() is thus received by several
executions of the function DecDCTout(), allowing the size of the buffer in the main memory to be reduced.

However, in this case, there has to be a match between the bitstream transmitted and the number of
macroblocks received.

Callback

DecDCTin() and DecDCTout() are both non-blocking functions that return without waiting for data
transmission/reception to terminate.

To detect the termination of the transmission, you can either poll, using the functions DecDCToutSync() and
DecDCTinSync(), or register a callback function to be called when the transfer terminates.

To register a callback function, use DecDCToutCallback() and DecDCTinCallback(). You can arrange for
image decompression to be carried out asynchronously by designing the callback so that it activates the
next data transmission/reception.

In the example below, the next DecDCTout() is activated within DecDCTout's callback function.

Data Compression Library 7-9

Run-Time Library Overview

Example:
main()
{

DecDCTout(mdec_image, slice); /*transmission of first block*/
DecDCToutCallback(callback); /*define callback*/
DecDCTvlc(mdec_bs, mdec_rl); /*VLC decoding*/
DecDCTin(mdec_rl, 0); /*transmit run level*/
:
/*foreground processing described here*/
:

}

callback()
{

LoadImage(&rect, mdec_image); /*transfer to frame buffer*/
if((rect.x += 16) < width)

 DecDCTout(mdec_image, slice); /*receive next*/
else
 DecDCToutCallback(0); /*terminate*/

}

Playing Movies with the CD-ROM

Movies can be played by reading in and playing bitstreams continuously from the CD-ROM. The resolution
and number of frames is determined by the decompression speed and the CD-ROM transmission speed.

The MDEC's maximum decompression speed is 9,000 macroblocks per second, or the equivalent of 30
320x240 images. The decompression speed has nothing to do with the compression ratio.

The image resolution and the number of frames played are, of course, inversely proportional. That is to say,
with a 320x240 image, a speed of 30 frames a second can be achieved, and with a 640x240 image, speed
of 15 frames a second can be achieved.

The process of continuously reading data from a CD-ROM is called streaming. Streaming functions are
supplied separately in the libcd library.

Movies are played by placing the bitstream in the containers supplied by the streaming mechanism.
Supplementary information such as movie size, etc., is not included in bit stream; therefore, the infomation
needed to play a movie is defined separately in the data format (STR format) added to the header.

Table 7-2: Decompression Speed and Resolution

Resolution Frames per second

320 x 240 30
640 x 240 15
640 x 480 7.5 ...

The CD-ROM transmission rate can be set to either 150KB/sec (standard speed) or 300KB/sec (double
speed). When playing at double speed, if the bitstream forming one frame is compressed to 10KB (=
300KB/30) or less, and then recorded on the CD-ROM, 30 frames of data per second would be read off
the CD-ROM.

Table 7-3: Transfer Speed and Data Size

Data size Frames per second

10KB 30
20KB 15
30KB 7.5 ...

7-10 Data Compression Library

Run-Time Library Overview

The moving picture play rate is determined by these two conditions. For example, when playing at double
speed, the bitstream comprising one frame (320x240) would be compressed to 10KB (= 300KB/30) before
being recorded on the CD-ROM.

Within the range satisfying these conditions, any number of frames, any image resolution, and any
compression ratio can be selected.

Direct Transmission and Texture Transmission

Simple moving-picture playback is achieved by using VRAM as a double buffer, and transmitting the
images decompressed in the drawing buffer, in succession. The movie transmission is used to clear the
background and is also able to draw the object primitive.

The method whereby decompressed images are transferred directly to the drawing area of the frame buffer
is called direct transmission.

Conversely, the method whereby texture transmission is carried out by temporarily transmitting
decompressed images to the texture area is called texture transmission. When texture transmission is
used, the textures used are limited to 16-bit mode.

Encoding by Means of the Local Environment

DCT compression is not normally carried out at run time.

However, if the images created on the drawing device are captured from the frame buffer and compressed
there, it is assumed that when authoring is carried out, data compression will be performed using the CPU
power of the local environment, so DCT compression functions are also provided in libpress.

The DCT calculations required for compression processing can also be carried out using the MDEC's IDCT
calculation circuit, so if the local environment is used, faster encoding is possible.

BVQ (Block Vector Quantization)

BVQ reduces the number of colors in a 24-bit/16-bit direct-color image by vector quantization, and
generates an image in 8-bit/4-bit index-color format. Vector quantization is a method in which quantities
(vectors) which cannot be ordered one-dimensionally are quantized adaptively, according to their frequency
of occurrence.

The data compressed by DCT has already been recoded to 16 bits when it is transmitted to the frame
buffer, so there is no saving in terms of the area in the frame buffer itself. However, vector-quantized
images have the advantage that they can be transmitted, still in compressed format, to the frame buffer,
and used, without conversion, as texture patterns.

To carry out block vector quantization, one image has to be divided up beforehand into several small areas.
The division method used generally depends on the way in which the image is used as a texture pattern.

On the PlayStation, an individual CLUT can be assigned to each polygon to be texture-mapped.
Accordingly, the areas are normally delineated according to the primitive values (u,v) of each polygon.

CLUT Vector Quantization

When vector quantization is carried out individually on small areas, the number of CLUTs generated is only
as big as the number of areas produced by division. However, when the number of divisions is large, the
area occupied by the CLUTs becomes too big to be negligible.

To avoid this situation, a function is provided for carrying out further vector quantization on the CLUT itself.
For example, when a 320x240 image is divided into 300 16x16 4-bit cells, the 300 CLUTs generated for
the cells can be quantized further and combined into 8 CLUTs, for example.

Data Compression Library 7-11

Run-Time Library Overview

Huffman Encoding

The Huffman encoding supported by libpress is the classical type in which the codebook is fixed. Huffman
encoding is only carried out on 4-bit index-color data.

In Huffman encoding, the content of the data is preserved by the process of compression or
decompression. This compression method is called reversible compression (or loss-less compression).
Generally speaking, in loss-less compression, the compression ratio cannot be controlled.

The Huffman encoder starts by generating a codebook from the frequency of occurrence of the input
pixels. The size of the codebook is fixed, regardless of the number of pixels, so when there are not many
pixels, the space occupied by the codebook is proportionally high, and compression efficiency is low.

When the codebook is generated, each pixel is compressed in accordance with it. As a result, the data
generated is in bitstream format, as with DCT.

The compressed data is always decompressed as a set along with the codebook.

Compression of Sound Data

The PlayStation uses sound data that has been compressed from 16-bit straight PCM data to 4-bit
ADPCM. The compressed sound data can be used, without conversion, as SPU sound-source data.

The SPU provides a function called looping so that periodic sound data can be recorded using a small
number of samples. When compressing sound data, you can set a suitable loop point.

7-12 Data Compression Library

Run-Time Library Overview

Run-Time Library Overview

Chapter 8:
Basic Graphics Library

Table of Contents

Overview 8-3
Library and Header Files 8-3

Graphics System 8-3
Frame Buffer Addressing 8-4
Display Area and Drawing Area 8-5
Drawing Environment 8-5
Display Environment 8-6
Display Area and Screen Area 8-7
Switching Display and Drawing Environments (Double Buffer) 8-7
Blocking Functions and Non-Blocking Functions 8-8

Primitives 8-9
Drawing Primitives 8-9
Special Primitives 8-10
Primitive Expression Format 8-10
Primitive Attributes 8-12
Combining Primitives 8-12
Executing Primitives 8-12
Primitive Drawing Rules 8-13

Ordering Tables 8-13
Registering Primitives in the OT 8-14
Registering Special Primitives 8-14
Linking Primitives Without an OT 8-14
Ordering Tables and Z Sorting 8-15
Reverse OT 8-15
Combining with Geometry Functions 8-16
Multiple OTs 8-17

Synchronization and Reset 8-17
Reset 8-17
Synchronization 8-17

Packet Double Buffer 8-20
Asynchronous Double Buffer 8-21

Texture Mapping 8-22
Texture Pattern Format 8-22
Texture-Mapping Primitive Brightness Values 8-24
Repeating Texture Patterns 8-25

Primitive Rendering Speed 8-26
Access Rules 8-27
Clipping 8-28
Structure of the Texture Cache 8-29

Primitive Division 8-31
Texture Mapping Distortion 8-31
Texture Cache Mistakes 8-31

8-2 Basic Graphics Library

Run-Time Library Overview

Clip Overhead 8-32
Primitive Division 8-32

Debug Environment 8-33
Debug Mode 8-33
Debug String 8-33
High-Level Library Interface 8-33

Cautionary Programming Notes 8-34
Texture Polygon Coordinate Specification 8-34
Handling PAL Format 8-39
Timing for Updating the Frame Buffer 8-40
VSync Synchronization in Interlace Mode 8-42

Basic Graphics Library 8-3

Run-Time Library Overview

Overview

The Basic Graphics library (libgpu) is a low-level function library that allows you to work with primitives, such
as triangles, rectangles, and sprites. It provides:

• SystemSystemSystemSystem functions for controlling the entire graphics system (for example, graphics system reset).
• Frame buffer accessFrame buffer accessFrame buffer accessFrame buffer access functions for directly reading and writing the contents of the frame buffer.
• PrimitivePrimitivePrimitivePrimitive functions for initializing and manipulating primitive structures and setting the texture page.
• Ordering tableOrdering tableOrdering tableOrdering table functions for recording primitives in an ordering table, manipulating ordering tables, and

drawing ordering table primitives.
• SynchronizationSynchronizationSynchronizationSynchronization functions for synchronizing your code with hardware events, such as the vertical blank

period and the completion of drawing operations.

Library and Header Files

To use graphics library services, you must link with the file libgpu.lib . You must also link
libapi.lib and libetc.lib when using libgpu.lib.

Your source files should include the header file libgpu.h . In addition, you must include libgte.h and
sys/types.h. You include sys/types.h because it defines the following data types used by
libgpu.h :

typedef unsigned char u_char;
typedef unsigned short u_short;
typedef unsigned int u_int;
typedef unsigned long u_long;

Graphics System

The PlayStation’s graphics system consists of:

• A specialized high-speed graphics rendering engine known as the GPU (Graphics Processing Unit).

• A 1MB area of high-speed video memory called the frame buffer. It is used for storing graphics data,
including the information used for the current video display, a drawing area, as well as textures and
color tables.

• A coprocessor (the GTE) for performing high-speed geometry operations. The GPU can use the
results of GTE calculations in its commands. The GTE is discussed in Chapter 9 (Basic Geometry
Library).

8-4 Basic Graphics Library

Run-Time Library Overview

Figure 8–1: Graphics System

 CPU GPU frame buffer video

 main bus

 command execution command execution

 drawing command

 main memory

The GPU draws graphics into the frame buffer’s drawing area by executing instruction strings (primitives)
stored in main memory. Libgpu’s data structures closely correspond to the primitives recognized by the
GPU hardware itself.

Data from the frame buffer is continuously used to create the video signal displayed on your television
monitor. By rewriting the frame buffer contents at speeds of up to 60 times per second, moving images are
generated. Note: Note: Note: Note: The graphics system contains no special background plane for displaying image data
after it is drawn temporarily in the frame buffer.

Frame Buffer Addressing

The frame buffer is arranged as a bitmap that is 1024 pixels wide by 512 pixels tall, with 16 bits per pixel.
The total size of the frame buffer is therefore one megabyte (1024 x 512 pixels x 2 bytes per pixel). It is
used to store texture patterns and color lookup tables (CLUTs) as well containing drawing and display
areas.

Figure 8–2: Frame Buffer

 1024

 Display region Texture pattern

 512

 Drawing region

 Texture CLUT

Pixels in the frame buffer are specified by 2-dimensional coordinates. X-coordinates range from 0 to 1023
and Y-coordinates from 0 to 511. Each pixel has a 16-bit depth: 5 bits for blue, 5 bits for green, and 5 bits
for red; the high-order bit indicates semi-transparent mode status, as shown below:

Basic Graphics Library 8-5

Run-Time Library Overview

Figure 8–3: Pixels

 15 14 10 9 5 4 0

 S B G R

 S: semi-transparent FLAG(STP)

Display Area and Drawing Area

The display area is a rectangular section of the frame buffer used to display the video image. Its size
depends on the display mode, which ranges from 256 x 240 to 640 x 480 (709 x 488 during overscan).
Any of the following combinations can be chosen:

Table 8-1: Display Modes

Width 256, 320, 360, 512, 640
Height 240 (interlace off), 480 (interlace on),
Pixel mode 24-bit, 16-bit
Interlace On, off (must be off in 480-line mode)

Note: Note: Note: Note: The screen heights assume an NTSC system. For information on working with PAL, see the section
“Handling PAL Format”.

The drawing area is a rectangular section of the frame buffer into which graphics data are drawn. Its size is
not limited as long as it is fully contained within the frame buffer.

If any part of the drawing area overlaps the display area, its data is shown on the screen. To avoid this
effect, a double buffering scheme is typically used. You prepare two separate areas of the same size in the
frame buffer. One area is used for drawing while the other is being displayed. After drawing into the drawing
area has completed, you switch the areas. Typically, the switching is done during the vertical blank period
in order to avoid unsightly screen flashing or tearing.

Drawing Environment

 The drawing environment contains general information related to two-dimensional primitive drawing, such
as the position of the drawing area and the drawing offset. This information is held in the DRAWENV
structure, defined as follows:

typedef struct DRAWENV
{

RECT clip; /*clipping (drawing) area*/
short ofs[2]; /*drawing offset*/
RECT tw; /*texture window*/
unsigned short tpage; /*texture page*/
unsigned char dtd; /*dither flag (0:off, 1:on)*/
unsigned char dfe; /*display area drawing flag*
unsigned char isbg; /*enable to auto-clear)*/
unsigned char r0, g0, b0; /*initial background color*/
DR_ENV dr_env; /*reserved*/

}DRAWENV;

You can use the function SetDefDrawEnv() to set the fields of a DRAWENV structure. You use
PutDrawEnv() to make it the current drawing environment. To get a pointer to the current drawing
environment, call GetDrawEnv().

DRAWENV contains the following information:

•••• Clipping: Clipping: Clipping: Clipping: The drawing (clipping) area is a rectangular area in the frame buffer defined by (clip.x, clip.y) -
(clip.x + clip.w, clip.y + clip.h).

8-6 Basic Graphics Library

Run-Time Library Overview

•••• Offset: Offset: Offset: Offset: The offsets ofs[0] and ofs[1] are added to the X and Y values, respectively, of all primitives
before drawing.

•••• Texture Window:Texture Window:Texture Window:Texture Window: (tw.x, tw.y) - (tw.x + tw.w, tw.y + tw.h) specifies a rectangle inside the texture page,
to be used for drawing textures.

•••• Texture Page:Texture Page:Texture Page:Texture Page: tpage specifies the texture page to be used as the default texture pattern. One texture
page has a size of 256 x 256 pixels.

•••• Dither Processing Flag:Dither Processing Flag:Dither Processing Flag:Dither Processing Flag: If dtd is set to 1, the drawing engine performs dithering when drawing pixels.

•••• Display Area Drawing Flag:Display Area Drawing Flag:Display Area Drawing Flag:Display Area Drawing Flag: When dfe is 1, drawing is permitted in the display area. (By default,
drawing into the display area is blocked.)

•••• Drawing Area Clear Flag:Drawing Area Clear Flag:Drawing Area Clear Flag:Drawing Area Clear Flag: If isbg is set to 1, the clipping area is cleared to the RGB color specified by
the r0, g0, & b0 fields when the drawing environment is set.

•••• Background Color: Background Color: Background Color: Background Color: r0, g0, b0 are the RGB color values used for clearing clipping area when isbg field
is set to 1.

Display Environment

Information related to the frame buffer display, such as the position of the display region, is called the display
environment. Display environment information is held in the DISPENV structure, defined as follows:

typedef struct DISPENV
{

RECT disp; /*display area*/
RECT screen; /*display start point*/
unsigned char isinter; /*interlace 0: off 1: on*/
unsigned char isrgb24; /*RGB 24-bit mode */
unsigned short pad0, pad1; /*reserved */

}DISPENV;

You can use SetDefDispEnv() to set the fields of a DISPENV structure. To make it the current display
environment, call PutDispEnv(). To get a pointer to the current display environment, call GetDispEnv().

DISPENV contains the following information:

•••• Display Area: Display Area: Display Area: Display Area: The rectangular area within the frame buffer (disp.x, disp.y) - (disp.x + disp.w, disp.y +
disp.h) is the display area. Its width (disp.w) can be 256, 320, 360, 512 or 640 pixels. Its height (disp.h)
can be 240 or 480 pixels.

•••• Screen Area Screen Area Screen Area Screen Area (screen.x, screen.y, screen.w, screen.h): Specifies where on the actual physical screen
the display area is shown. The standard monitor screen coordinates are (0, 0) - (256, 240). If you
specify a smaller screen area, it is an underscan; if you specify a larger screen area, it is an overscan.
For example, if screen.w is set to a value greater than 256, more pixels than 256 cannot be displayed,
even if in 320 mode. The size of each pixel does not change.

•••• Interlace:Interlace:Interlace:Interlace: If isinter is set to 1, the display will be in interlace mode. (If the height is 480, display is in
interlace mode regardless of the setting of this flag.)

•••• 24-Bit Mode Flag:24-Bit Mode Flag:24-Bit Mode Flag:24-Bit Mode Flag: If isrgb24 is set to 1, frame buffer data is interpreted as being in 24-bit pixel format
instead of the standard 16-bit.

Basic Graphics Library 8-7

Run-Time Library Overview

Display Area and Screen Area

The following figure shows the relationship between the display area and the screen area:

Figure 8–4: Display Area and Screen Area

 Frame buffer Display

 0 1023 0 255

 (disp.x,y) (screen.x,y)

 Display region

 disp.h screen.h

 disp.w screen.w

 511 255

Switching Display and Drawing Environments
(Double Buffer)

A double buffering system uses two areas in the frame buffer that switch between display and drawing
environments. For example, when buffer 0 occupies the rectangular area (0,0)-(320,240) in the frame buffer
and buffer 1 is at (0,240)-(320,480), the respective drawing and display environments are set as follows:

Table 8-2: Double Buffer

Buffer 0 Buffer 1 Notes
Drawing environment

(clip.x, clip.y) (0,0) (0,240) Clip start point

(ofs[0], ofs[1]) (0,0) (0,240) Drawing offset

Display environment

 (disp.x, disp.y) (0,240) (0,0) Display area origin

The fields of the DRAWENV and DISPENV structures may be set with the functions SetDefDrawEnv() and
SetDefDispEnv(). To switch the drawing and display buffers, use PutDrawEnv() and PutDispEnv()to set the
new drawing and display environments.

If you change the drawing environment using PutDrawEnv() while drawing is already taking place, there is
no effect on the current primitive being executed or on the remainder of the current primitive list. The new
drawing environment takes effect with the next drawing operation.

In addition to using PutDrawEnv(), you may also dynamically switch all or a portion of the drawing
environment in the middle of drawing by registering a special primitive in the ordering table. See “Primitives”
and “Ordering Tables” for more information.

On the other hand, settings made in the display environment become effective immediately. Therefore, the
display location and display area can be changed even when drawing is being carried on in the
background.

8-8 Basic Graphics Library

Run-Time Library Overview

The following code shows the basic method of switching double buffers:

DRAWENV drawenv[2]; /*drawing environments*/
DISPENV dispenv[2]; /*display environments*/
int dispid = 0; /*display buffer ID*/

while (1) {
VSync(0); /*wait for vertical blank*/
dispid = (dispid + 1) %2; /*toggle buffer ID between 0 and 1*/
PutDrawEnv(&drawenv[dispid]); /*switch drawing environment*/
PutDispEnv(&dispenv[dispid]); /*switch display environment*/
}

If you use interlace mode with a height of 480 lines, it may not be possible or practical to set up a double
buffer. (For example, in 640 x 480 mode there isn’t room for two buffers in the frame buffer.) Therefore, a
single buffer may be used for both drawing and display.

In interlace mode, in each frame (1/60 second), the display updates either the odd or even lines of the
buffer, alternately. In effect, odd lines are re-displayed every 1/30 second, and the same for even lines.

If you set the dfe flage of your DRAWENV structure to zero, drawing is prohibited to the areas of the screen
currently being displayed. This has the effect of allowing drawing only to the odd lines when even lines are
being displayed, and even lines when odd lines are being displayed. This is the equivalent of the usual
double-buffer switching. You don’t need to do any explicit switching between display and drawing
environments.

Note:Note:Note:Note: for this scheme to be effective, drawing must complete within 1/60 second.

Blocking Functions and Non-Blocking Functions

Functions that complete their processing before returning are called blocking functions. That is, the
program is blocked and the next instruction can’t execute until the current one finishes.

Several drawing functions that typically take a long time are processed in the background and return
without awaiting completion. These are called non-blocking functions.

The following functions, which directly access the contents of the frame buffer, are non-blocking:

• LoadImage() Transfer from main memory to frame buffer
• StoreImage() Transfer from frame buffer to main memory
• MoveImage() Transfer from frame buffer to frame buffer

The following functions, which draw primitives, are also non-blocking. See the sections on “Primitives” and
“Ordering Tables” for more information.

• DrawPrim() Draw a primitive
• DrawOTag() Execute a list of GPU primitves.

All functions other than those listed above are blocking functions.

To detect whether non-blocking functions have finished, or to wait for them to finish, you can call
DrawSync(). For example:

LoadImage(&rect, pix); /*A non-blocking function*/
DrawSync(0); /*Waits for drawing to complete*/

See “Synchronization” for more information about DrawSync().

A maximum of 64 non-blocking functions may be queued. For example:

DrawOTag(ot0); /*0*/
DrawOTag(ot1); /*1*/
DrawOTag(ot2); /*2*/

:

Basic Graphics Library 8-9

Run-Time Library Overview

If DrawOTag(ot0) is not completed when DrawOTag(ot1) is invoked, the system simply registers the request
to the queue and returns. DrawOTag(ot1) waits until DrawOTag(ot0) has finished, and then executes
automatically.

The queue contains a maximum of 64 items, so if a 65th request reaches the queue, it is blocked until the
queue is opened.

for (i = 0; i<100; i++)
LoadImage(....);

In this example, the 65th LoadImage is blocked until the first LoadImage is completed and the waiting
queue is available.

Primitives
The smallest command that the graphics system can handle is called a primitive (or a packet). Primitives
are data structures that are created and stored in main memory, and the CPU and the GPU may both refer
to them at the same time.

Primitives are classified as one of the following:

• Drawing primitives actually draw pixels in the frame buffer.

• Special primitives change certain parameters of the GPU, such as the clipping area and texture page,
while drawing is being done. They do not directly change the contents of the frame buffer.

Drawing Primitives

The drawing primitives are listed below. There are four different types of drawing primitive: Polygon, Line,
Sprite, and Tile.

Polygon Primitives

When drawing polygons, you can choose:

• Number of sides (3 or 4)

• Shading (Gouraud or flat)

• Texture mapping (on or off)

Therefore, the following polygon primitives can be used:

Table 8-3: Polygon Primitives

Primitive name Contents

POLY_F3 3-sided polygon (triangle), flat shaded
POLY_FT3 3-sided polygon (triangle), flat shaded, textured
POLY_G3 3-sided polygon (triangle), Gouraud shaded
POLY_GT3 3-sided polygon (triangle), Gouraud shaded, textured
POLY_F4 4-sided polygon (quad), flat shaded
POLY_FT4 4-sided polygon (quad), flat shaded, textured
POLY_G4 4-sided polygon (quad), Gouraud shaded
POLY_GT4 4-sided polygon (quad), Gouraud shaded, textured

Line Primitives

Line primitives draw straight lines.

8-10 Basic Graphics Library

Run-Time Library Overview

Table 8-4: Line Primitives

Primitive name Contents

LINE_F2 A straight line between two points
LINE_G2 Same as LINE_F2, except with color gradation
LINE_F3 Two connected lines running from points A to B, then B to C
LINE_G3 Same as LINE_F3, except with color gradation
LINE_F4 Three connected lines running from points A to B, B to C, and C to D
LINE_G4 Same as LINE_F4, except with color gradation

Sprite and Tile Primitives

These primitives are used for drawing rectangular areas. Tiles are drawn with a solid color, while sprites are
texture-mapped.

Table 8-5: Sprite Primitives

Primitive Name Contents

SPRT Texture-mapped Sprite (free any size)
SPRT_8 Texture-mapped Sprite (fixed size of 8 x 8 pixels)
SPRT_16 Texture-mapped Sprite (fixed size of 16 x 16 pixels)
TILE Non-textured solid color tile (free any size)
TILE_1 Non-textured solid color tile

(fixed size of 1 pixel by 1 pixel, i.e. a single dot)
TILE_8 Non-textured Solid color tile (fixed size of 8 x 8 pixels)
TILE_16 Non-textured Solid color tile (fixed size of 16 x 16 pixels)

Special Primitives

Special primitives change all or part of the drawing environment during drawing.

Table 8-6: Special Primitives

Primitive name Parameter to be changed Corresponding DRAWENV members

DR_ENV Changes drawing environment All members
DR_MODE Drawing, texture mode tpage, dtd, dfe, tw
DR_TWIN Texture window tw
DR_AREA Drawing area clip
DR_OFFSET Drawing offsetoffset

Primitive Expression Format

Primitives are defined as C structures. The first two words of all drawing primitives are the same:

typedef struct
{

unsigned long *tag;
unsigned char r0, g0, b0, code;

} P_TAG;

tag represents an internal pointer to the next primitive. It allows primitives to be grouped in a linked list
structure so that multiple primitives can be executed together.

The following is an example of a complete primitive structure. POLY_FT4 is defined as a four-sided, flat,
textured polygon:

typedef struct
{

Basic Graphics Library 8-11

Run-Time Library Overview

unsigned long *tag;
unsigned char r0, g0, b0, code;
short x0, y0;
unsigned char u0, v0;
unsigned short clut;
short x1, y1;
unsigned char ul, v1;
unsigned short tpage;
short x2, y2;
unsigned char u2, v2
unsigned short pad1;
short x3, y3;
unsigned char u3, v3;
unsigned short pad2

} POLY_FT4;

tag: Top 8-bits: Number of GPU words in packet
Bottom 24-bits: pointer to next primitive

code: primitive identifier (system reserved value)
r0,g0,b0: display color (Red, Green, Blue, values 0-255)
tpage: texture page ID
clut: CLUT (Color Look-Up Table) ID
x0,y0,...x3,y3: Screen coordinates of polygon vertices
u0,v0,...u3,v3: Coordinates within texture page for texture
pad1, pad2: Reserved, must be set to 0

Initializing Primitives and Setting Their Members

Primitives must be initialized before they can be executed. When initializing a primitive, call the initializing
function for that particular type of primitive; these functions set the tag, code, and pad members
appropriately. For example, before drawing a POLY_FT4 (rectangular, flat-shaded, textured polygon)
primitive, initialize it as follows:

POLY_FT4 ft4
SetPolyFT4(&ft4);

Most of the members of each primitive may be freely written to by your application unless specified as
reserved. There are numerous macros provided in libgpu.h for setting primitive members. For example,
examples 1 and 2 below generate the same code. For details, refer to libgpu.h.

Example 1
POLY_F4 f4;

SetPolyF4(&f4); /*initialize primitive*/
setRGB0(&f4, 0, 0, 255); /*R,G,B = 0, 0, 255*/
setXY4(&f4, 0, 0, 100, 0, 0, 100, 100, 100);
DrawPrim(&f4); /*execute primitive*/

Example 2
POLY_F4 f4;
SetPolyF4(&f4); /*initialize primitive*/

f4.r = 0; /*These 3 lines are*/
f4.g = 0; /*the same as doing*/
f4.b = 255; /*setRGB0(&f4,0,0,255)*/

f4.x0 = 0; /*These 8 lines are*/
f4.y0 = 0; /*the same as doing*/
f4.x1 = 100; /*setXY4(&f4,0,0,100,0,*/
f4.y1 = 0; /*0,100,100,100);*/
f4.x2 = 0;
f4.y2 = 100;
f4.x3 = 100;
f4.y3 = 100;

8-12 Basic Graphics Library

Run-Time Library Overview

DrawPrim(&f4); /*execute primitive*/

Primitive Attributes

The following attributes may be set for primitives:

SemiTrans Semi-transparent mode

ShadeTex Inhibits simultaneous texture mapping and shading

You can use SetSemiTrans() and SetShadeTex() to set or clear these attributes for each primitive, as shown
below. These functions may be called at any time between initialization and execution of the primitive.

POLY_F4 f4;
SetPolyF4(&f4); /*initialization*/
SetSemiTrans(&f4, 1); /*make into semi-transparent primitive*/
SetShadeTex(&f4, 1); /*turn shading OFF*/

Combining Primitives

Many primitives may be used in combination with other primitives; two primitives may be brought together
to form a single new primitive. This is done using the MargePrim() function.

typedef struct
{

DR_MODE mode; /*set mode primitive*/
SPRT sprt; /*Sprite primitive*/

} TSPRT;

setTSPRT (TSPRT *p, int dfe, int dtd, int tpage, RECT *tw)
{

SetDrawMode(&p->mode, dfe, dtd, tpage, tw);
SetSprt(&p->sprt);
return(MargePrim(&p->mode, &p->sprt));

}

The setTSPRT() function initializes a new user-defined primitive called TSPRT. A primitive TSPRT initialized
in this manner can be used with AddPrim() and DrawPrim() in the same manner as other primitives.

Note: Note: Note: Note: A combined primitive may not be more than 16 long words in total size.

Executing Primitives

Primitives that have been initialized may be executed individually with the DrawPrim() function as in the
following example.

POLY_F4 f4;
SetPolyF4(&f4);
setXY4(&fr, 0, 0, 100, 0, 0, 100, 100, 100); /*(0,0)-(100,100)*/
setRGBO(&f4, 0xff, 0x00, 0x00); /*RGB = (255, 0, 0)*/
DrawPrim(&f4); /*draw*/

When displaying multiple primitives, the order of execution determines the display priority, because when a
primitive is executed it is drawn on top of previously drawn primitives.

In the following example, prim[0] is displayed furthest back and prim[99] is displayed furthest forward.

for (i = 0; i<100; i++)
DrawPrim(&prim[i]);

However, multiple primitives are usually stored as a linked list in an ordering table and executed together
using the DrawOTag() function. See “Ordering Tables” for more information.

Basic Graphics Library 8-13

Run-Time Library Overview

Primitive Drawing Rules

The pixels drawn for a primitive are those where the center of each pixel lies within the boundary of the
polygon vertices. When the center of a pixel is outside this area, the following rules are used:

• If the pixel to the right is inside the drawing area → can be drawn
• If the pixel to the left is inside the drawing area → cannot be drawn
• If the pixel above is inside the drawing area → cannot be drawn
• If the pixel below is inside the drawing area → can be drawn

With POLY_* primitives, the extreme right and lowest points cannot be drawn. In the case of drawing a
quadrilateral, the rules apply as follows:

Figure 8–5: Drawing a Quadrilateral

 Drawing allowed

 Drawing Drawing
 allowed not allowed

 Drawing not allowed

This ensures that the pixels along the polygon boundary are not drawn more than once when polygons are
placed next to each other.

See “Texture Polygon Coordinate Specification” for more information on drawing rules involving texture
mapping.

Ordering Tables

In order to more easily control the order of execution for large numbers of primitives, the graphics library
uses a mechanism known as an ordering table (OT). The ordering table is a variation of a basic linked list,
designed to allow easy insertion of drawing primitives which represent portions of a three-dimensional
display.

Primitives can be registered in an ordering table with AddPrim() or AddPrims(). The registered primitives are
then executed using DrawOTag(). Since DrawOTag()is a non-blocking function, the CPU can perform
further processing without waiting for the completion of drawing by the GPU.

The OT consists of an array of pointers to primitives held in main memory. Its size is determined by the
required resolution of the display priority. For example, the following example creates an ordering table with
256 levels of priority:

unsigned long ot[256];
ClearOTag(ot, 256); /* initialize the OT */

ClearOTag() converts the basic array into a simple linked list, as shown below, where (EndofPrim) is a
special value used to indicate the end of the list of primitives:

ot[0]-> ot[1] -> ... -> ot[255] -> (EndofPrim)

8-14 Basic Graphics Library

Run-Time Library Overview

Registering Primitives in the OT

Before drawing, primitives must be registered in the OT with AddPrim():

AddPrim (ot + i, &prim); /* AddPrim(&ot[i], &prim);*/

The execution priority of each primitive is determined by its position in the OT. The primitives at the start of
the OT will be executed first (and hence displayed furthest back), and the primitives at the end of the OT will
be executed last (and hence displayed furthest forward).

In the following example, the primitives p1 and p2 are registered in the OT. Then DrawOTag() is called to
execute the primitives in the table. p1 is executed first (displayed furthest back on the screen) and p2 is
executed last(displayed furthest forward, i.e. it overwrites any primitives already drawn).

unsigned long ot[256]; /*OT (256 entries)*/
Clear0Tag(ot, 256); /*OT initialization*/
AddPrim(&ot[0], p1); /*register primitive p1 in ot[0]*/
AddPrim(&ot[255], p2); /*register primitive p in ot[255]*/
DrawOTag(ot); /*execute primitives in OT*/

Multiple primitives may be registered in the same OT entry. In this case, primitives will be executed after the
primitives subsequently registered in the same entry. In the following example, primitives will be executed in
the order p0, p3, p2, p1, p4.

AddPrim (&ot[2], p0); /*register in ot[2]*/
AddPrim (&ot[3], p1); /*register in ot[3]*/
AddPrim (&ot[3], p2); /*register in ot[3]*/
AddPrim (&ot[3], p3); /*register in ot[3]*/
AddPrim (&ot[4], p4); /*register in ot[4]*/

Registering Special Primitives

Special primitives can be used to switch all or part of the drawing environment during the drawing process.
These special primitives, like normal primitives, may be registered in the OT, then executed together with
normal primitives using the DrawOTag() function.

The scope of the special primitives depends on their location in the ordering table. In the following example
the env primitive setting is valid for execution of primitives registered after ot[128] ; therefore only p2
receives the influence of the env primitive.

AddPrim(&ot[0], &p1); /*register drawing primitive p1*/
AddPrim(&ot[128], &env); /*register special primitive env*/
AddPrim(&ot[255], &p2); /*register drawing primitive p2*/
DrawOTag(ot);

Linking Primitives Without an OT

You may set up your own linked list of primitives rather than using the ordering table structure. Such a list
may still be executed using DrawOTag(). For example, the following provides the same operation as
DrawPrim().

myDrawPrim(void *p)
{

TermPrim(p); /* terminate the primitive */
DrawOTag(p); /* list and execute it. */

}

drawSprites(SPRT *p, int n)
{

int i;
for (i = 0; i < n-1; i++, p++)

CatPrim(p, p+1); /* link primitive p to primitive p+1 */
TermPrim(p);
DrawOTag(p);

Basic Graphics Library 8-15

Run-Time Library Overview

}

Note that when you link primitives directly to one another, you give up the flexibility of the ordering table
structure.

Ordering Tables and Z Sorting

You can use an OT to implement Z sorting, which is a method of eliminating hidden surfaces by sorting a
list of primitives by their depth (z-value) in 3D space. To do this, you calculate a primitive’s position in the
OT from its Z-value, as shown in this example:

unsigned long *ot[256];
:

AddPrim(ot+256-z0,p0);
:

In the basic geometry library (libgte), many of the functions calculate an otz value (to help create a Z-
ordered OT) while performing 3-dimensional coordinate conversion.

SVECTOR x3, x2;
int flg, otz;

otz = RotTransPers(&x3, (long*)&x2, &flg);

In this case, the RotTransPers() function performs coordinate and transparent conversion of the 3-
dimensional values pointed at by x3, using the current matrix, and stores the 2-dimensional coordinates
obtained at x2. At the same time it returns an index to the OT called otz. The otz value is the Z coordinate
divided by 4; therefore, it is sufficient to provide an OT with 1/4 of the dynamic range of the actual Z-depth.
By making use of otz, a 3-dimensional Z sort can be performed at high speed.

Reverse OT

The otz variable takes a large value for distant objects; as they get closer, the value approaches zero.
Because of this, it is necessary to invert the value of otz before using it as an index into the OT array. To
avoid this, the libraries make it possible to reverse the order of the entries in the OT. The ClearOTagR()
function initializes the OT in reverse order. Then the order of OT execution will be reversed.

The ClearOTag() function will initialize the OT array as follows:

ClearOTag(ot, OTSIZE)
ot[0]-> ot[1] -> ot[2] -> ... -> ot[OTSIZE-1] -> (EndofPrim)

The ClearOTagR() function will initialize the OT array as follows:

ClearOTagR(ot, OTSIZE)
ot[OTSIZE-1]-> ot[OTSIZE-2] -> ... -> ot[0] -> (EndofPrim)

When using ClearOTagR(), the parameters you pass to other functions are changed accordingly, as shown
in the table below:

Table 8-7: OT

Using ClearOTag() Using ClearOTagR()

#define OTSIZE 1024 #define OTSIZE 1024
unsigned long *ot[OTSIZE]; unsigned long *ot[OTSIZE];
.....
ClearOTag (ot,OTSIZE); ClearOTagR (ot, OTSIZE);
.....
AddPrim (ot+OTSIZE-otz, &prim); AddPrim (ot+otz, &prim);
.....
DrawOTag (ot); DrawOTag (ot+OTSIZE-1);

8-16 Basic Graphics Library

Run-Time Library Overview

Note how the pointers into the OT are done differently when using ClearOTagR(). In particular, the
calculations required to calculate the index into the OT for the AddPrim function are simpler, and since this
function is likely to be called very often, the result is a net savings.

The normal order OT is most often used for 2-dimensional graphics applications such as sprite-based
games, where the position of each primitive is not necessarily based on a position in 3D space. The reverse
order OT is used more often for 3-dimensional graphics applications where the Z-depth of the 3D
calculations correspond more directly to positions within the OT.

The reverse order OT is initialized via a high speed hardware function, whereas the normal order OT is
initialized via software. Because of this, large OT arrays are initialized much more quickly if they are reverse
order.

Combining with Geometry Functions

To display three-dimensional objects, each object is broken up into combinations of triangles and
quadrilaterals, and the coordinates of each polygon determine the position of the corresponding primitive
which must be drawn. In other words, the (x,y) coordinates of the primitive in the frame buffer are obtained
from the 3D coordinates of a polygon component of an object. This coordinate transformation is performed
by the geometry library.

Object movement/rotation, and viewpoint movement/rotation may be described in a single rotation matrix
and movement vector. The vertices of the polygons which make up the objects are described below.

Figure 8–6: Polygon Vertex Format

(Wx, Wy, Wz): Coordinate position in world coordinates
(Sx, Sy, Sz): Coordinate position in screen coordinates
(m00,...,m22): Rotation matrix
































































×

Tz

Ty

Tx

 +

Wz

Wy

Wx

 m22 m21 m20

m12 m11 m10

m02 m01 m00

 =

Sx

Sy

Sx

The primitive which is drawn is actually a projection onto a two-dimensional plane (the screen). The screen
is an imaginary plane a certain distance h from the point of view. This process is known as perspective
transformation.

Figure 8–7: Perspective Transformation

 4/ Sz

Sz/ Sy h

Sz/ Sx h

 =

otz

y

x
































×

×

Here the calculated (x, y) are the (x, y) members of the primitive and otz is an OT entry. See the libgte
documentation for details. Following is an example of a function performing this operation.

void rotTransPersAddPrim(
SVECTOR *pos; /*position*/
SPRT *sp; /*Sprite primitive*/
unsigned long *ot; /*OT*/
int ot_size) /*size of OT*/

{
long otz, dmy, flg;

otz = RotTransPers(&(pppos->x[0],,
(long*)sp ->x0,&dmy,&flg);

if (otz > 0 && otz < ot_size)
AddPrim(ot+otz, sp);

}

Basic Graphics Library 8-17

Run-Time Library Overview

Multiple OTs

An entire OT can be inserted into another OT if desired.. This method is valid for using more than one
hierarchical coordinate system at once.

The following example connects the child-OT ot1 with a length of n to the parent-OT ot0.

AddOT(unsigned long *ot0, unsigned long *ot1, int n)
{

AddPrims(ot0, ot1, ot1+n-1);
}

However, since the link destination for ot1[n-1] is replaced with the ot0 link destination in AddPrims(ot0,
ot1+n-1), in certain cases, the primitive linked to ot1[n-1] is not rendered. As a result, the primitive must not
be registered in the final ot1 entry.

Synchronization and Reset

Reset

To reset the graphics system, call ResetGraph(). This function takes one parameter, which determines the
reset level. All levels immediately interrupt the drawing command in progress, cancel all the requests
remaining in the queue, and enter wait status.

•••• Level 0 (ResetGraph (0)) Level 0 (ResetGraph (0)) Level 0 (ResetGraph (0)) Level 0 (ResetGraph (0)) Completely resets the graphics system. It should be executed only once,
when the program is activated. The drawing command and queue commands are cancelled and
callbacks are initialized. The display mode is initialized at 256x240 and the display is masked (the
screen goes black.)

•••• Level 1 (ResetGraph (1)) Level 1 (ResetGraph (1)) Level 1 (ResetGraph (1)) Level 1 (ResetGraph (1)) Cancels the command currently being executed and the commands
remaining in the queue. The drawing environment and display environment are preserved. This level is
used frequently when switching the double buffer.

•••• Level 3 (ResetGraph (3)) Level 3 (ResetGraph (3)) Level 3 (ResetGraph (3)) Level 3 (ResetGraph (3)) Equivalent to Level 0 complete reset, except that the display environment
and the drawing environment are preserved. Also, the display is not masked. This level is used to
initialize all child processes while saving the display screen status set by the parent processes. When
shifting control from parent processes to child processes using Exec(), a complete reset is needed in
order to switch the callback, but with a level 0 reset, the display is also initialized. Therefore, once the
display synchronization misses, the screen becomes disturbed when shifting to child processes. In
order to avoid this, child processes should be initialized using ResetGraph(3) at the start, rather than
ResetGraph(0).

Below is a summary of the above points:

Table 8-8: Reset Levels

Reset Level Callback DISPENV DRAWENV command queue

0 Initialize Initialize Initialize Initialize
1 Save Save Save Initialize
3 Initialize Save Save Initialize

Synchronization

In order to provide a smooth display, programs need a way to synchronize their graphics operations (and
other processing) to the vertical blank period of the video display. In addition, programs need a method of

8-18 Basic Graphics Library

Run-Time Library Overview

detecting the end of drawing operations being performed in the background; that is, non-blocking functions
such as DrawOTag().

There are two methods for detecting when asynchronous events have occurred:

• Polling: that is, checking to see whether the event has occurred.
• Callbacks: setting up functions that are automatically executed when the event occurs.

Polling

The DrawSync() function allows you to detect the end of drawing operations. It has the following options:

• DrawSync (0) Blocks until all requests remaining in the queue are finished.
• DrawSync (1) Returns the number of positions in the drawing queue.

The VSync() function allows you to detect the next vertical blank period, as well as providing other
information. It can be used in several different ways:

• VSync (0) Block until the next vertical blank period begins.
• VSync (1) Return the number of horizontal sync units since the previous VSync(0) or VSync(n) call.
• VSync (n) Where n>0, waits for the nth vertical blank period. (VSync(0) waits for the next VB

period. VSync(2) waits for the 2nd VB period, etc.)
• VSync (-n) Where n<0, returns the number of vertical blank periods since the program was

started.

Callbacks

A callback is a function that is called when background processing has been completed. Libgpu provides
two functions that let you register callbacks:

Table 8-9: libgpu callback registering functions

Function Name Trigger

VSyncCallback() Vertical Synchronization
DrawSyncCallback() Drawing completion

DrawSyncCallback lets you define a function that is called at the completion of a non-blocking drawing
operation such as DrawOTag().

VSyncCallback() lets you define a function that is called at the beginning of the vertical blank period. This
function can be used to switch the display from one buffer to another and to perform other graphics
operations which much be synchronized in this fashion.

Basic Graphics Library 8-19

Run-Time Library Overview

int buffer = 0; /*Active buffer indicator*/
int new_frame_is_ready = 0; /*“ready to switch buffers” flag*/

:
:

void main()
{ /*initialization routine entered here*/

:
:
VSyncCallback(vbcallback); /*defines callback routine*/
:
:

}

vbcallback()
{

if(new_frame_is_ready) /*This is set within our*/
{ /*DrawSyncCallback function*/

/*(not shown here)
buffer = 1 - buffer; /*Switch buffers*/
PutDispEnv(&db[buffer].disp);
PutDrawEnv(&db[buffer].draw);
new_frame_is_ready = 0; /*Reset flag*/

}

}

In the following code, the callback routine increments a counter. The routine MyVSync(), by looping until the
counter changes, is functionally equivalent to Vsync(0).

main() {
/* Initialization routine entered here */

VSyncCallback (callback); /* Define callback */
while (1) {

/* Processing carried out within the frame entered here */
myVSync();

 }
}
static volatile int Vsync_Count = 0; /* Vertical Synchronization counter */
void myVSync(void) { /* Blocks until Vsync_Count variable

is updated */
int i = Vsync_Count;
while (i == Vsync_Count);

}
void callback() { /* Counter increases when vertical

synchronization is started */
Vsync_Count++;

}

Frame Synchronization

To avoid screen flicker, the drawing and display buffers should be switched at the same time as the vertical
synchronization. DrawSync() and Vsync() are used to accomplish this.

/* (1) After drawing has concluded, waits until the next vertical
synchronization and starts the next drawing */
DrawSync(0);
Vsync(0)
Draw0Tag(ot);

/* (2) Regardless of whether drawing has concluded or not, waits until the
next vertical synchronization and starts the next drawing */
Vsync(0);
ResetGraph(1);
Draw0Tag(ot);

8-20 Basic Graphics Library

Run-Time Library Overview

/* (3) Regardless of whether drawing has concluded or not, waits until the
next 2 vertical synchronizations and starts the next drawing */
Vsync(2);
ResetGraph (1);
Draw0Tag (ot);

Please note that drawing at 60 frames/second in example (2) is not guaranteed. Drawing at 60 frames can
be achieved only when the CPU processing terminates in 1/60 second. Also, note that in example (3) ,
counting from the Vsync called immediately prior to the Vsync(2) blocks for two frameblockss.

Packet Double Buffer

The general term for the area in memory used for the OT and primitives is packet buffer.

Waiting for primitives to be drawn after they have been registered in the OT makes it impossible to operate
the CPU and the graphics system in parallel. The primitives and OT cannot be accessed by the CPU until
after the graphics system has finished processing them.

Figure 8–8: Drawing After Registering in OT

 CPU Registering in OT __ Registering in OT

 GPU __ OT drawing __

Operating the graphic system and the CPU in parallel requires two packet buffers, one is used to contain
the OT and primitives currently being generated, the other is used for the OT and primitives which were
previously generated and which are now being executed by the graphics system. The two packet buffers
assume the tasks of drawing and execution alternately. This is referred to as a packet double buffer
system.

Figure 8–9: Packet Double Buffer

 CPU Registering Registering Registering
 in OT #0 in OT #1 in OT #0

 GPU Drawing Drawing Drawing
 of OT #1 of OT #0 of OT#1

Basic Graphics Library 8-21

Run-Time Library Overview

This is a packet double buffer. An example of a packet double buffer is given below. The OT and primitive
must be combined together when using a packet double buffer.

typedef struct{
unsigned long ot[256]; /*OT*/
SPRT sprt[256]; /*Sprite Primitive*/

} DB;

main(){
int j;
DB db[2], *cdb;
cdb = db[0];
while (1) {

cdb=(cdb==db)? db+1: db; /*switch buffers*/
ClearOTag(cdb->ot); /*clear OT*/
for(j=0; j<256; j++){ /*register Sprites in OT*/

/*at this point, calculate the Sprite position*/
AddPrim(cdb->ot, cdb->sprt[j];

}
DrawOTag(cdb->ot); /*Draw*/

}
}

Asynchronous Double Buffer

Normally, the packet double buffer is switched at the completion of drawing. When using interlace mode,
however, drawing must be updated every 1/60 second, regardless of the calculation/rendering time. In
such cases, callbacks can be used to forcibly carry out redrawing.

/*Asynchronous DrawOTag:
*The specified OT waits for the next VSync and is executed.
*/
main() {

.....

VSyncCallback (callback);
.....

while (1) {
/*Create primitive list*/

DrawSync(0);
make_packet();

unsyncDrawOTag(ot);
}

}

static void *completed_ot = 0;
unsyncDrawOTag (void *ot)
{

completed_ot = ot;
}
void callback (void) {

if (completed_ot) {
ode_patch();
ResetGraph (1); /* stop drawing */
DrawOTagR (completed_ot); /*

}
}
/*Patch for interlace double buffer.
*/
static void ode_patch (void)
{

static int ode = 0;
DRAWENV draw;

8-22 Basic Graphics Library

Run-Time Library Overview

GetDispEnv (&draw);
if (draw.dfe) {

while (GetODE() ==ode);
ode = (ode+1) &0x01;

}
}

In this example, DrawOTag is executed in each field regardless of the load on the CPU. However, when
updating of the OT was not performed in time, the previous OT will be reused.

Note: Note: Note: Note: The purpose of ode_patch() is to adjust for a problem in VSync timing when switching the
odd/even fields in interlace mode; see “VSync Synchronization in Interlace Mode” for details.

Texture Mapping

Texture mapping is a method of mapping a two-dimensional bitmapped image known as a texture pattern
onto the surfaces of triangles and quadrilaterals.

Textures are stored in areas of the frame buffer (outside the display and drawing areas) called texture
pages. A texture page consists a 256 x 256 bitmap. Its upper left X coordinate in the frame buffer must be
a multiple of 64 and the Y coordinate a multiple of 256. (Therefore, it’s possible for texture pages to overlap
horizontally.)

Texture Pattern Format

There are three pixel format modes used in texture patterns, as shown in the table below. Each primitive
may have a different mode.

Table 8-10: Texture Pattern Modes

Mode Type Colors Texture page width

4-bit CLUT-based 16 64
8-bit CLUT-based 256 128
16-bit Direct RGB 32767 256

In 16-bit mode, the pixel value from the texture is used directly: 15 bits are used for RGB color information,
allowing 32767 colors, plus 1 bit to specify semi-transparent status for that pixel.

The 4-bit and 8-bit texture modes use a color lookup table (CLUT), also known as a palette, to specify the
actual color values. Each pixel value in these modes is used as an index into the appropriate CLUT. The
CLUT itself a series of 16-bit pixel values arranged in a horizontal format within the frame buffer. Each 16-
bit pixel value represents one of the colors to be used for the texture. A 4-bit texture requires a CLUT with
16 consecutive entries, and an 8-bit texture requires a CLUT with 256 consecutive entries.

16-bit textures are stored with one pixel per 16-bit word, while 8-bit textures store 2 pixels in each word,
and 4-bit textures store 4 pixels in each word, as shown in the figure below. Since a 256 x 256 pixel texture
pattern is placed in 1 texture page, the area actually occupied by a texture page in the frame buffer varies
from 256 x 256 (16-bit mode) to 64 x 256 (4-bit mode).

Figure 8–10: Texture Pattern Format

(a) 4bit mode (pseudo color)

15 12 11 8 7 4 3 0

 pix3 pix2 pix1 pix0

Basic Graphics Library 8-23

Run-Time Library Overview

(b) 8bit mode (pseudo color)

15 8 7 0

 pix1 pix0

(c) 16bit mode (direct color)

15 14 10 9 5 4 0

 S B G R

 S: semi-transparent (STP) bit

When using 4-bit and 8-bit textures, the coordinates of the texture pattern (U,V) and the coordinates in the
frame buffer will not directly map to each other. Care must be taken, when using LoadImage(), to load
texture patterns into the frame buffer. The same applies to MoveImage() and StoreImage().

The rectangular area specified for these functions is based on standard frame buffer coordinates using 16-
bit pixels. For 4-bit textures, the rectangle width must be divided by 4. For 8-bit textures it must be divided
by 2. This means that 8-bit textures must be an even multiple of 2 pixels in width, and that 4-bit textures
must be an even multiple of 4 pixels in width.

The following code sample illustrates texture mapping on a quadrilateral:

POLY_FT4 ft4;

SetPolyFT4(&ft4); /*initialize primitive */
ft4.tpage = GetTpage (0, 0, 640, 0);/*texture page = (640,0)*/
ft4.clut = GetClut (0, 480); /*texture CLUT = (0, 480)*/

/* texture pattern within the (x,y) = (0,0) - (256, 256) is
/* textured mapped to (u,v) = (0,0)-(128,128) within the */
/* texture page */

setXY4(&ft4, 0, 0, 256, 0, 0, 256, 256, 256);
setUV4(&ft4, 0, 0, 128, 0, 0, 128, 128, 128);

DrawPrim(&ft4); /*execute primitive*/

Note: Note: Note: Note: GetTPage() and GetClut() require that LoadImage() be used to load the texture and texture CLUT in
advance. LoadTPage() and LoadClut() load the texture page and texture CLUT and return the texture page
ID and the texture CLUT ID respectively.

Texture CLUTs may be set independently for each primitive regardless of the texture to be used. Multiple
textures may use the same CLUT. A 4-bit texture can use any 16 entries from a larger CLUT.

Setting the Current Texture Page

Unlike polygons, sprite primitives (SPRT) do not specify a texture page. Therefore, you must make sure the
current texture page is set correctly when executing sprites.

You can specify the initial current texture page in the drawing environment. The special primitive DR_MODE
can be used to explicitly change the current texture page. This switches the current texture page mode.

DR_MODE dr_mode; /*mode primitive*/
SPRT16 sprt; /*16 x 16 Sprite primitive*/

SetDrawMode(*&dr_mode, 0, 0, GetTPage(2, 0, 640, 0), 0);
SetSprt16(&sprt);
setXYO(&sprt, 100, 100);

ClearOTag(ot, 2);
AddPrim(ot + 1, &sprt); /*register SPRT16 in ot[1]*/
AddPrim(ot + 1, &dr_mode); /*register DR_MODE in ot[1]*/

8-24 Basic Graphics Library

Run-Time Library Overview

DrawOTag(ot);

Note that two primitives are registered in the same OT entry. The latest one registered (DR_MODE) is
executed first.

Transparent Pixels and Semi-Transparent Pixels

You may select transparent, opaque or semi-transparent for each pixel when performing texture mapping.
The high bit (bit 15) of each pixel value (or the corresponding CLUT entry in 4 and 8-bit mode) is the semi-
transparent (STP) bit.

When the pixel value of the texture pattern is 0x0000 (STP, R, G and B are all zero), the pixels are
transparent and therefore not drawn.

Pixels with the STP bit set to 1 will be displayed as semi-transparent, if the primitive they are mapped onto
is set in semi-transparent mode with the SetSemiTrans() function. Pixels with the STP bit set to 0 but not
with R, G and B all zero will always be opaque.

Table 8-11: Transparent/Semi-Transparent Pixels

STP, B, G, R (0, 0, 0, 0) (1, 0, 0, 0) (0, n, n, n) (1, n, n, n)

Non-transparent primitive Transparent Black Non-transparent Non-transparent
Semi-transparent primitive Transparent Semi-transparent Non-transparent Semi transparent

 black

Primitives that do not use texture mapping may also be set to semi-transparent mode using
SetSemiTrans(). In these cases, the primitive’s pixels will all be semi-transparent.

Note: Note: Note: Note: The processing speed of semi-transparent polygons is greatly reduced, because the existing pixels in
the frame buffer must be read, processed, and then written back.

The rates of semi-transparent primitives are specified in primitive units. Below is a list of semi-transparency
rates which may be specified.

Table 8-12: Semi-Transparency Rates

Background Brightness Value Primitive Brightness Value

0.5 0.5
1.0 1.0
1.0 -1.0
1.0 0.25

The brightness value is clipped when it exceeds the maximum value. Semi-transparency rates may be used
specified by the texture page specified using the DR_MODE primitive. The same rate is applied to primitives
that do not perform texture mapping.

See the section above on “Primitive Attributes” for more information.

Texture-Mapping Primitive Brightness Values

In the case of a texture-mapped primitive, the texture pattern brightness value of the pixels of a polygon is
specified by the (r, g, b) members of the primitives. These values taken together comprise the actual
brightness value.

The brightness value of a pixel being drawn is calculated from the corresponding texture pattern pixel value
and the brightness value specified by the (r,g,b) members of the primitive, as shown below:

T = Texture pattern pixel value

L = Brightness value of the pixel as specified by the R,G,B fields of the
primitive.

P = (T*L)/128

Basic Graphics Library 8-25

Run-Time Library Overview

In other words, if the (r, g, b) fields of the primitive are all set to 128, then all the pixels drawn will be the
same brightness value as the source texture. If the resulting brightness value (P) exceeds 255, it will be
clipped to a maximum value of 255.

Either the r, g, b members must be set, or this option must be prohibited using the SetShadeTex() function
when a texture mapping primitive is initialized.

POLY_FT4 ft4;
SetPolyFT4(&f4); /*initializes the primitive*/

SetRGB0(&fT4, 0x80, 0x80, 0x80); /*initializes the RGB values*/
/*or*/
SetShadeTex(&ft4, 1); /*inhibit shading*/

Repeating Texture Patterns

It is possible to set one portion of a texture page as a texture window and within that space wrap round
(repeat) a texture pattern.

Setting a texture window can be done when setting the drawing environment through the tw field of the
DRAWENV structure, or by using the DR_MODE primitive. Please refer to the following example.

Texture windows are normally set to (0,0) - (255, 255), which causes the texture not to be repeated. Setting
the texture window to a smaller region will cause the texture to be repeated as necessary when drawing a
primitive.

When specifying a texture window in order to repeat a texture, the texture coordinates (U,V) of the primitive
should be within the texture window.

u_short tws[2], twe[2];
DR_MODE dr_mode; /*drawing mode primitive*/

tws[0] = tws[1] = 32; /*texture window (32,32)-(64,64)*/
tws[0] = tws[1] = 64;

/*initialization drawing mode primitive*/
SetDrawMode(&dr_mode,0,0, GetTPage(0, 0, 640, 0), tws, twe);

:
AddPrim(ot+n, &dr_mode);

Texture Cache

When rendering a texture-mapped polygon, the texture pattern must be read from the frame buffer. To
improve rendering speed, the PlayStation’s GPU contains a 2K high-speed texture cache. When textures
are used, they are read from the frame buffer into the cache. Subsequent uses of the same texture pixels
(texels) are read directly from the cache, which is much faster than reading from the frame buffer.

Like the frame buffer, textures in the texture cache are referred to by two-dimensional addresses. These
addresses depend on the pixel mode of the polygon being drawn. The following table shows the cache sizes for
each pixel mode:

8-26 Basic Graphics Library

Run-Time Library Overview

Table 8-13: Texture Cache Size

Pixel Mode Size (width x length)

4 bit/pixel 64x64
8 64x32
16 32x32

Primitive Rendering Speed

To improve rendering speed on the PlayStation, it’s necessary to determine which is slower, the rendering
speed of the GPU or the computation speed of the CPU. This can be determined by calling DrawSync().

• If the speed bottleneck is in the CPU, DrawSync() returns immediately.
• If the speed bottleneck is in the GPU, DrawSync() is blocked; that is, it doesn’t return immediately.

The amount of time DrawSync() is forced to wait is a measure of the latency through the GPU.

When the bottleneck is in the GPU, program code optimization will not improve performance, so a means
for improving rendering speed is necessary.

This section explains a few of the factors that determine the rendering performance of the GPU and general
methods for improving rendering speed.

In the PlayStation, frames are first rendered in the frame buffer, then output to the display. Therefore,
rendering performance can be determined essentially from the number of read and write accesses to
VRAM (Video RAM).

The rendering (execution) speed of a specific primitive depends on its area and type. Primitive rendering
consists of repeated reads and writes to the frame buffer VRAM. The larger the area of the primitive, the
greater the amount of VRAM written and hence the greater the rendering time. Semi-transparent rendering
is slower than opaque rendering of the same primitive, since semi-transparent rendering requires read
access as well as write access.

The rendering speed depends on the primitive type. The execution speed of primitives with the same
rendering area are in the following order:

Figure 8–11: Primitive Rendering Speed

TILE

POLY_F* POLY_G*

POLY_FT*(4bit/OnC) POLY_FT*(4bit/OffC)

POLY_FT*(8bit/OnC) POLY_FT*(8bit/OffC)

POLY_FT*(16bit/OnC) POLY_FT*(16bit/OffC)

POLY_GT*(4bit/OnC) POLY_GT*(4bit/OffC)

POLY_GT*(8bit/OnC) POLY_GT*(8bit/OffC)

POLY_GT*(16bit/OnC) POLY_GT*(16bit/OffC)

SPRT(4bit/OnC) SPRT(4bit/OffC)

SPRT(8bit/OnC) SPRT(8bit/OffC)

SPRT(16bit/OnC) SPRT(16bit/OffC)

High speed Low speed

Basic Graphics Library 8-27

Run-Time Library Overview

OnC indicates that the texture cache is in hit status, and OffC indicates that the texture cache is in miss status,
while 4bit/8bit/16bit indicates the texture mode. Rendering speed is always faster in cache hit, while when the
texture cache is in miss state, 4bit mode texture is faster than 8bit, which is faster than 16bit.

Access Rules

Primitive rendering speed can be calculated from the frame buffer access cycle.

Once all the primitives have been rendered to the frame buffer, they are displayed. Rendering performance
is related to the frequency of read-write access to the frame buffer.

Basic Rules

A write access to the frame buffer corresponds directly to a rendering operation. Read accesses to the
frame buffer take place when a texture pattern is being read and when in semi-transparent mode. The rules
for access cycles are as follows.

Table 8-14: Access Cycles

Access direction pixels/cycle Notes

Write 2 SPRT,TILE,POLY_F3,POLY_F4
1 Other

Read 1 Texture mapping
semi-transparent rendering

For example, the number of cycles required to render a 100x100 POLY_G4 and a 100x100 POLY_F4 are
shown below.

Table 8-15: Number of Access Cycles

Primitive type POLY_G4 POLY_F4

Total number of pixels 100x100=10000 100x100=10000
Total number of reads 0 0
Total number of writes 10000 5000
Total cycles 10000 5000

Texture mapping

Calculating the rendering speed of texture maps is extremely complex. However, we can first consider a
simple texture miss/hit, where the mapping is 1:1. In the 4-bit texture pattern, four texels (texture pixels) are
packed into one 16-bit word. Therefore, four texels can be read together with one access. SImilarly, with an
8-bit texture pattern, two texels are read simultaneously.

Table 8-16: Number of Cycles in POLY_FT4

In the case of a 100x100 POLY_FT4

Mode 4-bit 8-bit 16-bit

Total number of reads 10000/4=2500 10000/2=5000 10000
Total number of writes 10000 10000 10000
Total 12500 15000 20000

8-28 Basic Graphics Library

Run-Time Library Overview

Table 8-17: Number of Cycles in SPRT

In the case of a 100x100 SPRT

Mode 4-bit 8-bit 16-bit

Total number of reads 10000/4=2500 10000/2=5000 10000
Total number of writes 5000 5000 5000
Total 7500 10000 15000

It can be seen from this presentation that 4-bit textures are the fastest.

Texture Enlargement Ratio Dependencies

In these examples, 1:1 texture mapping was performed. However, the calculations differ if the texture is
enlarged or reduced. Below, the primitives from the previous examples are reduced horizontally by 2 (4-bit
mode).

Table 8-18: Number of Cycles Used when Reduction Is Involved

Total number of reads 100x100/4=2500
Total number of writes 50x100=5000
Total 7500

Note that simply halving the area will not halve the rendering time.

Rendering speed improves when a texture is expanded, because the same texels can be used multiple
times, and fewer texture reads are needed to render an area.

Texture Cache Dependencies

In the above examples, the texture cache is always missed. However, a texture for which there is a cache
hit can be used directly without a read operation. Calculating using the previous example:

Table 8-19: Texture Cache Dependencies

In the case of a 100x100 SPRT

Mode 4-bit 8-bit 16-bit

Cache hit 5000 5000 5000
Cache miss 7500 10000 15000

Note that if the texture pattern is in cache, rendering speed is constant regardless of the mode.

Clipping

The number of rendering cycles also depends on how polygons are clipped. Rendered polygons are
clipped within the rendering area. During clipping, the left and upper portions of the polygon generate
empty cycles.

Basic Graphics Library 8-29

Run-Time Library Overview

Figure 8–12: Clipping

Drawing range

 A

 B

Drawing polygon

In this example, empty cycles are generated at A but are not generated at B. Empty cycles also include
empty texture read cycles.

Structure of the Texture Cache

This section describes the texture cache for the benefit of programmers who are concerned with optimizing
its use.

Cache blocks

A texture page is divided into rectangular regions based on cache size. Each of these regions is referred to
as a cache block. Cache blocks are numbered in sequence (according to block number).

In 4-bit mode, the size of the cache is 64x64. The texture page is divided into 16 cache blocks as shown
below.

Figure 8–13: Cache Blocks in Texture Page

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0

64

128

192

255

64 128 192 255

Cache entries

Each cache block can be divided further into 16 x 1 regions known as cache entries. In 4-bit mode, there
are 256 cache entries and they are arranged as shown below.

8-30 Basic Graphics Library

Run-Time Library Overview

Figure 8–14: Cache Entries

0 1 2 3

4 5 6 71

0

63 254

48

255253252

248 249

247246245244

250 251

0

633216

61

62

...

Each entry is structured as follows:

struct {
 u_char block_id; /*block number tag*/
 u_short data[4]; /*texture pattern data*/
} Entry[256];

Since cache data consists of 4 short words, a 4-bit texture would store 16 texture pixels in a single entry.

Cache strategies

A block number is saved in each entry, and this is used to determine when there is a hit or miss in the
cache. In texture mapping, the determination of whether texture pixel (u,v) is in cache or not is performed in
the following manner.

The block number to which a texture pixel (u,v) belongs can be calculated as:

block_id = (v>>6)<<2 + (u>>6)

And, the entry number associated with (u,v) can be calculated as:

entry_id = (v&0x3f)<<2 + (u&0x3f)>>4

Based on these calculations, a cache hit evaluation can be performed with the following code:

is_cache_hit_4bit(u_char u, u_char v)
{

int block_id = (v>>6)<<2 + (u>>6);
int entry_id = (v&0x3f)<<2 + (u&0x3f)>>4;

if (Entry[entry_id].block_id == block_id)
return(1); /*cache hit*/

else
return(0); /*cache miss*/

}

Since cache block numbers are saved independently in each cache entry, texture pixels having different
block numbers can coexist in the cache as long as their entry numbers are different. For example, since the
texture pixels in the rectangular area defined by

(u,v) = (0,0)-(63,63)

all belong to the same texture block, they will be saved in the cache together. The texture pixels in the
rectangular region defined by

(u,v) = (16,16)-(79,79)

span multiple texture blocks, but they will also be saved in the cache together since there are no
overlapping entries. However, the texture pixels in the rectangular region defined by

(u,v) = (8,8)-(71,71)

have some overlapping entry numbers (e.g. (u,v) = (8,8)-(15,8) and (u,v) = (64,8)-(71,8)). Therefore, these
pixels will not be saved in the cache together even though the rectangular area itself fits in a 64x64 area.

Basic Graphics Library 8-31

Run-Time Library Overview

Also, pixels that are not in contiguous regions and do not have overlapping entries, such as

(u,v) = (0, 0)-(15,15)
(u,v) = (80,64)-(95,79)

can be saved in the cache together.

Mode dependencies

The sizes of the cache blocks and cache entries vary according to mode. However, the number of entries
is always 256.

Table 8-20: Size of Cache Blocks and Cache Entries

Mode Block Number of blocks Entry Number of entries

4 64x64 16 16x1 256
8 64x32 32 8x1 256
16 32x32 64 4x1 256

Primitive Division

Problems can arise when drawing an area that occupies a large space in the display screen with a single
texture primitive.

Texture Mapping Distortion

PlayStation uses affine transformation for texture mapping. When mapping a large primitive, the image can
become distorted due to conversion errors. The texture coordinates (u ,v) attached to the points within the
polygon (x, y) are calculated as:

u = a0*x + a1*y + a2

v = b0*x + b1*y + b2

This does not produce a correct image. On the other hand, the following equations contain correct
perspective conversion:

u = (a0*x + a1*y + a2*z + a3) / (c0*x + c1*y + c2*z +c3)

v = (b0*x + b1*y + b2*z + b3) / (c0*x + c1*y + c2*z +c3)

If the z depth within the polygon is fixed or changes are few, a correct mapping image can be created.

As a result, when a quadrilateral primitive which occupies a comparatively large area of ground and has
large depth changes is drawn, a mapping image with a bent diagonal line will result due to conversion
errors.

Texture Cache Mistakes

Texture mapping a large primitive cannot get any value from using the texture cache. In 4-bit mode, one
texture cache entry is maintained horizontally 16 texels (4 short words). When the necessary texels are not
in the cache, GPU combines the cache entries containing those texels and speculatively reads them. If the
surplus 15 texels which are read additionally are used before the entry is flashedflushed, this contributes to
the drawing efficiency, but if they are not used, they are discarded as useless.

However, in 4-bit mode the texture cache size is restricted to a 64x64 size. This means that texels
separated by 64 texels share the same cache entry. Therefore, when drawing something which has a
maximum displacement (•u, •v) of the (u,v) within the primitive greater than 64, cache mistakes will occur
without fail during drawing.

8-32 Basic Graphics Library

Run-Time Library Overview

In the worst case (when the mapping of the u,v direction and x,y direction are exactly 90•) the cache entry
texel read speculatively is flashed before it is used next and then becomes useless. In such a situation, the
drawing speed is reduced by half.

The difficult point in this problem is that the drawing speed can fluctuate greatly depending on the primitive
drawing direction. The drawing direction fluctuates dynamically with the local screen matrix value and the
matrix value is moved by the controller input. Undecided elements such as this which cause major
fluctuations in the drawing efficiency can make the program more difficult.

Clip Overhead

Drawing a large primitive is disadvantageous from a clipping standpoint. If the entire primitive is outside the
drawing area, that primitive is not drawn (that is, not recorded to the OT). However, if even one section falls
within the drawing area, that section must be recorded to the OT. Although drawing outside the drawing
area can be cancelled by the GPU clipping function, an empty cycle can sometimes be produced. As the
primitive increases in size, the chance that its entire area will all be outside the drawing area decreases and
the chance that an empty cycle will be produced increases.

Primitive Division

Almost all of these problems can be solved by dividing a large primitive in advance. For a primitive which
has an area which has the possibility of becoming large, the area and distance from viewpoint before
perspective conversion are evaluated during drawing and the decided frequency is recursively divided at
the mid-point. Depending on the objective, there are several division algorithms and packaging methods.
Following is a simple POLY_FT4 recurrent division example:

typedef struct {
short x, y, z
u_char u, v
short x2, y2

}VERTEX

/*Macro for performing mid-point division*/
#define half (v0, v1, v2) /
(v0)->x3 = ((v1)->x3+(v2)->x3)>>1, /
(v0)->y3 = ((v1)->y3+(v2)->y3)>>1, /
(v0)->z3 = ((v1)->z3+(v2)->z3)>>1, /
(v0)->u = ((v1)->u+(v2)->v)>>1, /
(v0)->v = ((v1)->u+(v2)->v)>>1, /
get_RotTransPers (&((v0)->x3), &((v0)->x2, &dmy, &dmy, &dmy);

extern POLY_FT4 *heap /*Buffer which saves primitive after division*/
extern POLY_FT4 *sle;tpm; /*Template*/
extern int min_x, max_y; /*Drawing area*/
extern int max_x, max_y;
void divideFT4 (int ndiv, VERTEX *v0, VERTEX *v1, VERTEX *v2, VERTEX *v3)
{

if (min4(v0-> x, v1->x, v2->x, v3->x) > max_x) return;
if (min4(v0-> x, v1->x, v2->x, v3->x) > min_x) return;
if (min4(v0-> x, v1->x, v2->x, v3->x) > max_y) return;
if (min4(v0-> x, v1->x, v2->x, v3->x) > min y) return;
if (ndiv)
{

u_long d;
VERTEX v4, v5, v6, v7, v8
half (&v4, v0, v1);
half (&v5, v2, v3);
half (&v6, v0, v2);
half (&v7, v1, v3);
half (&v8, &v5, &v6);
divideFT4(ndiv-1, v0, &v4, &v6, &v8);
divideFT4(ndiv-1, &v4, v1, &v8, &v7);

Basic Graphics Library 8-33

Run-Time Library Overview

divideFT4(ndiv-1, &v6, &v8, v2, &v5);

divideFT4(ndiv-1, &v8, &v7, &v5, v3);
return;

}
else
{

*heap = *skelton;
setXY4 (heap, v0->x, v0->y, v1->x, v1->y,

v2->x, v2->y, v2->x, v2->y);
setUV4(heap, v0->u, v0->v, v1->u, v1->v;

v2->u, v2->v, v2->u, v2->v);
heap++;

 }
}

Perspective conversion is carried out correctly on the new vertex produced by the division (division vertex).
With this method correct conversion is performed only on the division vertex and can be thought of as
being interpolated via the primary method. Therefore, when the number of divisions increases (if the
number of division vertices increases), the approximate precision increases and the quality of the texture
images also increases.

Division also has an effect on the texture cache. The (•u, •v) of the primitive after conversion are smaller than
those before division. When division is repeated and the (•u, •v) stay within the size of the texture cache, the
drawing efficiency is greatly increased.

Division is also effective for clipping. By dividing a large primitive the probability that the entire primitive area
will fall outside the drawing area increases. As a result, it is possible to reduce the useless empty cycles
outside the drawing area.

Debug Environment

Debug Mode

When debug mode is set, each function checks the conformity of the data as far as possible. If there is any
problem, it will print a return code and the contents as a debug string.

Debug String

When debug mode is set by the SetGraphDebug() function, or the contents of a structure is output by
using the Dump...() function, the output character string is stored in the specified character string buffer.
The Fnt...() function is used to display this on screen.

High-Level Library Interface

Libgpu is designed to avoid dependence on any particular data structure and paradigm. It contains no
functions that can work directly with PlayStation graphics formats such as TIM (a two-dimensional image
related data structure) or TMD (a three-dimensional object data structure). To handle these formats directly,
you can use functions of the extended graphics library (libgs).

However, the OpenTMD()/ReadTMD() and OpenTIM()/ReadTIM() functions are available to analyze the
contents of TMD data and TIM data only for the debugging of the data itself. There is also an interface
between libgpu and libgs.

ReadTIM()interprets as much as possible the header information within TIM format image data of TIM data.

ReadTMD()interprets as much as possible the information of any polygon data inside any object with TMD
data.

8-34 Basic Graphics Library

Run-Time Library Overview

Cautionary Programming Notes

This section discusses some topics that you should be aware of when using libgpu.

• Texture polygon coordinate specification
• Handling PAL format
• Timing for updating the frame buffer
• VSync synchronization in interlace mode

Texture Polygon Coordinate Specification

The following problems have been reported when drawing textured polygons:

1. When attempting to display a 16x16 texture map on a 16x16 polygon, using the parameters (0, 0) to
(15, 0) and (0, 15) to (15, 15) causes the lines at the bottom and right edges not to be displayed.

2. With the textured polygon POLY_FT4, enlarging the texture before displaying the polygon causes an
extra dot to be displayed on the right and bottom edges.

(x,y)=(0,0)–(16,16), (u,v)=(0,0)–(16,16) Normal
(x,y)=(0,0)–(17,17), (u,v)=(0,0)–(16,16) Normal
(x,y)=(0,0)–(31,31), (u,v)=(0,0)–(16,16) Normal
(x,y)=(0,0)–(32,32), (u,v)=(0,0)–(16,16) Extra dot displayed

3. With the textured polygon POLY_FT4, texture patterns cannot be specified if they touch the right or
bottom sides of the texture page.

These problems relate to the following drawing rules.

Drawing Rules

The drawing rules for PlayStation POLY_... primitives specify that drawing cannot be performed along the
right and bottom edges. This rule prevents the polygon boundary lines from being written twice when
polygons are used to cover an area.

An example of this is shown in the following diagram. As can be seen, without this rule, the center
intersecting lines of polygons P0, P1, P2, and P3 would be written twice. This might be a problem in some
cases, such as when using semi-transparent mode.

Figure 8–15: Drawing Rule

P0 P1

P2 P4

The above example assumes that a square specified by the coordinates (x, y) = (0, 0) to (8, 8) and (u, v) =
(0, 0) to (8, 8) is being drawn as POLY_FT4. In other words, the following is assumed.

POLY_FT4 ft4;

SetXY4(&ft4, 0,0, 8,0, 0,8, 8,8);
SetUV4(&ft4, 0,0, 8,0, 0,8, 8,8);

The texture pattern for the above is mapped as shown below.

The numbers in the map represent the texture pattern values (v, u) that are copied to the corresponding
pixels. These values are entered in the order of (v, u), not (u, v), in accordance with frame buffer addressing.

Basic Graphics Library 8-35

Run-Time Library Overview

Figure 8–16: Mapping

 0 1 2 3 4 5 6 7 8

 0 00 01 02 03 04 05 06 07 08

1 10 11 12 13 14 15 16 17 18

2 20 21 22 23 24 25 26 27 28

7 70 71 72 73 74 75 76 77 78
8 80 81 82 83 84 85 86 87 88 The (u.v) values at

this point are (8,8).

If the drawing rule described earlier is applied under this condition, the lines at the right and bottom edges
are not displayed, so the actual display is as shown below.

Figure 8–17: Displayed contents

 0 1 2 3 4 5 6 7

 0 00 01 02 03 04 05 06 07

 1 10 11 12 13 14 15 16 17

 2 20 21 22 23 24 25 26 27

 7 70 71 72 73 74 75 76 77

In the example above, texture mapping at (0, 0) to (7, 7) is accurate from pixels (0, 0) to (7, 7).

Next, if (u, v) = (0, 0) to (7, 7), the mapping is as shown below.

8-36 Basic Graphics Library

Run-Time Library Overview

Figure 8–18: Mapping

 0 1 2 3 4 5 6 7 8

 0 00 00 01 02 03 04 05 06 07

1 00 00 01 02 03 04 05 06 07

8 70 70 71 72 73 74 75 76 77 The (u,v) values at
this point are (7,7).

Applying the drawing rule described above, the lines at the right and bottom edges are deleted, so that the
lines represented by texture values u = 7 and v = 7, i.e., the lines at the right and bottom edges, are not
displayed.

Figure 8–19: Displayed Contents

 0 1 2 3 4 5 6 7

 0 00 00 01 02 03 04 05 06

 1 00 00 01 02 03 04 05 06

 7 60 60 61 62 63 64 65 66

As shown above, correct results will be obtained if (x, y) = (0, 0) to (8, 8) and (u, v) = (0, 0) to (8, 8) are used.

In ordinary texture mapping, no problems should occur when the mapping is contiguous, i.e., when
adjacent polygons have adjacent texture patterns applied to them.

However, in background displays, adjacent cells (POLY_FT4 cells) are not required to use adjacent textures
by necessity.

In this case, using the normal specification described above would cause the following types of problems
to occur.

Inverting or Rotating Textures

For example, suppose you want to rotate the texture described above 180 degrees in the XY direction and
then display the rotated texture. Without changing the (u, v) values for POLY_FT4, you can specify the
following for (x, y).

SetXY4(&ft4, 8,0, 0,0, 8,8, 0,8);

The texture pattern for the above is mapped as shown below.

The numbers in the map represent the texture pattern values (u, v) that are copied to the corresponding
pixels.

Basic Graphics Library 8-37

Run-Time Library Overview

Figure 8–20: Mapping

 0 1 2 3 4 5 6 7 8

 0 08 07 06 05 04 03 02 01 00

1 18 17 16 15 14 13 12 11 10

2 28 27 26 25 24 23 22 21 20

7 78 77 76 75 74 73 72 71 70
8 88 87 86 85 84 83 82 81 80 The (u,v) values at

this point are (0,8).

Applying the drawing rule described earlier, the lines at the right and bottom edges are not displayed, and
so, as shown below, the line defined as (u, v) = (0, 0) to (0, 7) (the points at each pair of UV spatial
coordinates from (0, 0) to (7, 0)) are not mapped. Instead, the points from (8, 0) to (8, 7) are shown as the
left edge, meaning that the entire image is shifted one dot to the left when it is mapped.

Figure 8–21: Displayed Contents

 0 1 2 3 4 5 6 7

 0 08 07 06 05 04 03 02 01

1 18 17 16 15 14 13 12 11

2 28 27 26 25 24 23 22 21

7 78 77 76 75 74 73 72 71

Here (u,v)=(1,0) is
mapped instead of the
expected (u,v) = (0,0).

This effect may occur when the texture pattern is inverted vertically or when the polygon is rotated 90 or
more degrees.

In particular, when the polygon is rotated, the mapped texture pixels change depending on the angle of
rotation.

Enlarging Textures

Let us consider an example in which the same POLY_FT4 as above is enlarged to twice its size.

In this case, specifying (x, y) = (0, 0) to (16, 16) and (u, v) = (0, 0) to (8, 8) causes the texture pattern to be
mapped as shown below (values are rounded to the nearest whole number).

8-38 Basic Graphics Library

Run-Time Library Overview

Figure 8–22: Mapping

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 0 00 01 01 02 02 03 03 04 04 05 05 06 06 07 07 08 08

1 00 01 01 02 02 03 03 04 04 05 05 06 06 07 07 08 08

2 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18

 3 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18

 14 70 71 71 72 72 73 73 74 74 75 75 76 76 77 77 78 78

 15 80 81 81 82 82 83 83 84 84 85 85 86 86 87 87 88 88

 16 80 81 81 82 82 83 83 84 84 85 85 86 86 87 87 88 88

Applying the same drawing rule, the lines at the right and bottom edges are not displayed, so (u, v) is
displayed in the range (0, 0) to (8, 8) as shown below.

Figure 8–23: Displayed Contents

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0 00 01 01 02 02 03 03 04 04 05 05 06 06 07 07 08

1 00 01 01 02 02 03 03 04 04 05 05 06 06 07 07 08

2 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18

 3 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18

 14 70 71 71 72 72 73 73 74 74 75 75 76 76 77 77 78

 15 80 81 81 82 82 83 83 84 84 85 85 86 86 87 87 88

 The “u=8” point remains here

When the mapping is gradually increased from the same scaling factor, this effect occurs precisely when
the scaling factor becomes 2.

Specifying Pixels on the Left and Bottom Edges of the Texture Page

For the same reason as explained above, it is not possible to display the lines at the texture pattern right
and bottom edges (the lines specified as u = 255 and v = 255, respectively).

Basic Graphics Library 8-39

Run-Time Library Overview

In the example used earlier, you must specify the following to display the 8 x 8 section at the right bottom
edge of the texture page.

SetUV4(&ft4, 248,248, 256,248 256,256, 248,256);

But because the resolution of (u, v) is 8 bits, you cannot set a value of 256, because it will overflow to a
value of zero. Therefore, these values must be rounded down to 255 as shown below.

SetUV4(&ft4, 248,248, 255,248 255,255, 248,255);

Note that the line defined by u = 255 and v = 255 is not displayed. This problem occurs when polygons are
enlarged by a factor of two or more.

Similarly, this problem occurs at the leftmost line (the line at u = 0) if the texture is mapped as horizontally
flipped. If the texture is mapped as both horizontally and vertically flipped, this problem occurs at the top
and leftmost lines (the lines at v = 0 and u = 0). In other words, neither of these lines is displayed.

Corrective Measures

Subtracting a 1 from the (u, v) values will avoid all of the problems described above, although other
problems may occur. This will, however, prevent the right and bottom edges of the texture pattern from
being displayed. In other words, if the texture pattern is a 16 x 16 pattern, it will be enlarged to 16:15, and if
it is an 8 x 8 pattern, it will be enlarged to 8:7 when displayed. Be sure to note this when creating Sprite
patterns.

Handling PAL Format

The information in this chapter assumes an NTSC display. A number of changes are necessary in order to
output a signal for PAL-format TV receivers.

Differences between NTSC and PAL

The major differences between NTSC and PAL are shown in the following table:

Table 8-21: Differences between NTSC and PAL

Video format NTSC PAL

Field rate 60Hz 50Hz
Standard vertical resolution 240 256

Since the PAL field rate is 50Hz, the maximum display rate is 50 frames/second. Also, since vertical sync
interrupts only occur 50 times a second, programs that use Vsync for timing will appear to slow down to
5/6 of the NTSC rate.

The vertical resolution that can be displayed on a standard TV is greater for the PAL format. Thus, a larger
display area within the frame buffer is needed for full-screen displays on a PAL-format TV. If the NTSC-
format display area is used on a PAL TV, an upper or lower section of the screen will appear dark.

Changes to handle PAL format

Programs designed with the NTSC format in mind must be changed in the following ways to handle PAL-
format monitors.

• Enable PAL mode using the SetVideoMode() function
• Adjust the display starting position
• Adjust timing
• Adjust display area

Of these, changes in the first two are required. Changes in the last two are optional depending on the
application.

8-40 Basic Graphics Library

Run-Time Library Overview

Enabling PAL mode

For the DTL-H2000, PAL mode can be enabled by setting the DIP switch on the main unit and then using
the SetDispMode() function.

#include <libetc.h>
main()
{
SetVideoMode(MODE_PAL);
.....
}

Programs operating in this mode will run on PAL PlayStations as well.

Adjusting the display starting position

The vertical resolution of the display is 240 lines in the standard setting. Thus, without any changes, the
display area on a PAL TV will appear as if it were shifted to the top of the screen. However, the display area
should be centered on the screen by modifying the default values of the screen structure in DISPENV.

Figure 8–24: Display Starting Position

0

8

0

256

255

256

248240

0 0

255

Display
Display

DISPENV disp;

disp.screen.x = 0; /*same as NTSC*/
disp.screen.y = 8; /*(256-240)/2*/
disp.screen.w = 256; /*same as NTSC*/
disp.screen.h = 240; /*same as NTSC*/

PutDispEnv(&disp);

Adjusting timing

In PAL mode, VSync interrupts are generated only 50 times a second. Many programs use the vertical sync
interrupt (VSync()) to handle timing, so in these cases timing should be adjusted by 6/5.

Timing for Updating the Frame Buffer

The PlayStation can update the display area in the frame buffer (in operations such as swapping double
buffers) at a rate different from the video frame rate (1/60 sec). However, if the display is updated at an
irregular rate (that is, not a multiple of 1/60 second), flicker may result on the screen, which may be
perceived by users as a bug in the application.

If the time spent in calculation and rendering operations exceeds the frame rate, motion on the screen may
appear delayed for a moment. This is referred to as a skipped frame and is generally tolerated, but it may
still be interpreted by some users as a defect.

The following points relate to managing frame rates when developing an application.

Timing for updating double-buffer switching

Switching double buffers is generally synchronized with the vertical sync.

Basic Graphics Library 8-41

Run-Time Library Overview

In (A), buffer-switching depends on either rendering or displaying, whichever is slower. Thus, switching will
become out of sync with vertical retrace and will take place during the display period. Therefore, unless a special
effect is being performed intentionally, a VSync(0) should be executed when the buffers are switched so that
synchronization is maintained.

(A) (B)
while (1) { while (1) {
....
DrawSync(0); DrawSync(0);

VSync(0);
swap_buffer(); swap_buffer();
DrawOTag(ot); DrawOTag(ot);
} }

Keeping the frame rate constant

If the time required to create a frame is sometimes slightly less than 1/60 second and sometimes slightly
more, the application’s frame rate will jitter between 60fps and 30fps. This can cause objects on the screen
to move in an unnatural manner, leading to complaints from users.

The same thing applies for other frame rates (such as 20, 15, etc.) whenever the time period for creating a
frame is close to a 1/60 second boundary. (Or a 1/50 second boundary for PAL video systems.)

In these cases, the frame rate can be fixed (at the slower rate) by using the VSync counter to determine
when to change buffers. The following example fixes the frame rate at 30 fps by calling VSync(2), which
waits for the second vertical blank after the last VSync call:

while (1)
{

DrawSync(0);

/*Wait for 2nd vertical blank after last VSync call*/
VSync(2);

swap_buffer();
. . . /*build next frame*/
DrawOTag(ot); /*draw next frame*/

}

You can fix the frame rate at 20 frames/sec by using VSync(3) and at 15 frames/sec by using VSync(4).

Using absolute time

Sometimes it’s not desirable to synchronize an application to the slowest frame rate, especially if frame
rates drop only at specific and relatively rare instances. Also, forcing buffer switching to stay in sync with
the fixed vertical sync generates idle periods where the CPU and GPU perform no real operations.

If the frame rate varies, the internal clock of an application should not be based on the frame rate, because
the speed of an object on screen will vary depending on the frame rate. Instead, you can use an absolute
counter such as VSync(-1) or RCnt3 for such calculations.

(A) (B)
while (1) { while (1) {
....

DrawSync(0); DrawSync(0);
VSync(0); VSync(0);
swap_buffer(); swap_buffer();
frame++; frame = VSync(-1);
DrawOTag(ot); DrawOTag(ot);

} }

In these examples, frame is used to increment stages of motion or animation. The code in (A) will result in a
movement slowdown when the frame rate drops, and a speedup when the frame rate increases. To avoid
this, you can calculate frame as shown in (B). In this case, the overall motion will not be delayed or speeded
up, even if frames are occasionally skipped due to overflow in calculation or rendering.

8-42 Basic Graphics Library

Run-Time Library Overview

If the displacement or scrolling of an object is based on an absolute counter, there is no need to keep a
fixed frame rate. Therefore, this approach can be considered a more thorough solution than forcing a fixed
frame rate. However, there is an increased load on the program if updates are consistently made
independently from double-buffer switching. Therefore, the choice of method should be determined based
on the application’s objectives.

Cancelling rendering operations

In interlaced mode, both calculation and rendering operations must be completed within 1/60 second.
Therefore, when switching buffers, the vertical sync (VSync) must have a higher priority than drawing
completion (DrawSync)

Therefore, rendering must be reset midway to synchronize with VSync(0). In general, rendering time varies
more than calculation time so predicting rendering time is difficult. If a large figure is to be drawn and there
is an overflow in rendering time, rendering can be reset midway so that screen flicker from interlace mode
can be avoided.

(A) (B)
while (1) { while (1) {
....
DrawSync(0); VSync(0);
VSync(0); ResetGraph(1);
swap_buffer(); swap_buffer();
DrawOTag(ot); DrawOTag(ot);

}

In particular, performing MoveImage() on rectangles that are 16 dots wide or less and rendering of polygons
that are narrow in width generate frequent page breaks and tend to have varying processing times. If these
kinds of operations are to be performed often in interlace mode, buffer switching should not be dependent
on rendering speed.

Return value from VSync(1)

If you call VSync(1), the return value is the time elapsed since the last VSync(0) or VSync(n) call, in horizontal
sync units.

VSync(0); /*wait for V-BLNK*/
t = VSync(1); /*value of H from last VSync(0)*/

In this code, you’d expect t to be close to 0. However, this may not be the case, because functions such
as sound callbacks and controller drivers are executed by the system during the vertical blank period.

VSync Synchronization in Interlace Mode

A problem arises when using the interlace single buffer (vertical 480 dot) mode. When switching the
drawing in VSyncCallback() rather than VSync(), only the even fields of the first primitive rendering recorded
to the OT are cached. As a result, the background may not be able to be cleared and an afterimage may
remain.

Cause

In interlace mode, the even and odd fields are alternatively displayed at 1/60 second intervals. In other
words, if the mode is 640x480, y displays the even line and the odd line alternatively. At such times, the
GPU performs the following operations depending on whether even or odd is being displayed:

• When displaying an odd field, only the even line is rendered.
• When displaying an even field, only the odd line is rendered.

Though it is a single buffer, it becomes a mechanism whereby the screen being rendered is not displayed.

Therefore, the GPU must know whether the current video output is an odd field or an even field. However,
during the vertical blank, the GPU always recognizes it as an even field.

Basic Graphics Library 8-43

Run-Time Library Overview

Figure 8–25: Switching between even and odd fields

even V-BLNK

even

odd

odd

V-BLNK even V-BLNK

even

Video

GPU even* even*

Note: Note: Note: Note: even* refers to the fact that the GPU recognizes the current field as even when it should be odd.

Vsync is called at the V-BLNK start point (not the end point). Therefore, the items rendered during V-BLNK
are only rendered in an even field. In Z-sorting, the section which is normally rendered first becomes the
background section. As a result, the background of only half a field is not cleared, BG rendering is not
performed, and other such problems arise.

Countermeasures

To avoid this, rendering must be started immediately after the vertical blank has terminated. Since
VSyncCallback() cannot detect V-BLNK termination, you can use the following options:

• Add a callback using H-Sync callback (RCnt2)

• Increase the frequency of H-Sync during V-BLNK using VSync(1) is needed. However, a function
GetODE() is being introduced as a more reliable method for distinguishing whether the current field is even
or odd.

u_long GetODE(void); / *0...EVEN 1...ODD */

GetODE() is formally introduced in Library Ver. 3.7. When using prior libraries, incorporate the above-
mentioned declaration into libgpu.h, etc.

Please note that the GetODE() value does not indicate the even or odd field of the current video output, but
rather the value of the even or odd field recognized by the GPU. Since GetODE() returns only even frames
during a V-BLNK immediately after a VSyncCallback(), an expedient is required. Refer to the sample
program for details.

Supplement

In interlace mode, the odd and even fields are forcibly switched to 1/60[sec] with NTSC standards.
Therefore, when in this mode, all processes must be completed at 1/60[sec]. When rendering time is the
cause of processing mistakes (GPU trouble), these can be avoided by cancelling rendering (ResetGraph(1)),
although of course a partial polygon will be produced. If the CPU is the cause (CPU trouble), screen
disturbance can be avoided by using the previous OT until the CPU generates the next OT to perform re-
rendering.

A rendering command (Draw0Tag) must be issued within the VSyncCallback() in order to implement this.

8-44 Basic Graphics Library

Run-Time Library Overview

Run-Time Library Overview

Chapter 9:
Basic Geometry Library

Table of Contents

Overview 9-3
Library and Header Files 9-3

Theoretical Geometry Operations Using the Basic Geometry Library 9-3
Coordinate Calculation 9-3
Light Source Calculation 9-5
Normal Line Vector, Light Source Vector Direction 9-8
GPU Code 9-8

Normal Line Clipping 9-8
Normal Line Clipping Function 9-8

Depth Cueing 9-10
Implementation of Depth Cueing (Common Operations) 9-10
Depth Cueing Using Vertex Colors 9-11
Depth Cueing Using Textures 9-11

Back Color, Far Color, BG Color 9-13

Material Light Source Calculation with Material Quality 9-13

Functions with Three or Four Vertices 9-14

libgte Argument Format 9-14
Recommended Format 9-15

libgte Function Flag Variables 9-15

About libgte Mesh Functions 9-17

Changing Screen Offsets 9-18

PMD Functions 9-18
PRIMITIVE Group 9-18
TYPE Packet Data Configurations 9-19
VERTEX 9-20

SMD, RMD Functions 9-21

Polygon Division 9-21

9-2 Basic Geometry Library

Run-Time Library Overview

Basic Geometry Library 9-3

Run-Time Library Overview

Overview

On the PlayStation, polygons are not drawn directly after calculation. Instead, the polygons on a given
screen are sorted before drawing takes place:

Geometry arithmetic → sorting → drawing

Library and Header Files

Programs using the basic geometry library must link with the file libgte.lib .

Source code must include the header file libgte.h .

Theoretical Geometry Operations Using the Basic Geometry Library

When you use the functions provided by the basic geometry library, The GTE is activated to perform high-
speed calculations. It performs two primary types of calculation:

• Coordinate calculation, which takes the three-dimensional coordinates of the vertices of polygons and
generates two-dimensional coordinates on the display screen. These calculations can involve
coordinate and/or perspective conversions.

• Light source calculation, which finds the lighting of a polygon on a screen from the direction, color and
intensity of a light source and the position of the polygon.

Coordinate Calculation

The basic geometry library assumes three types of fixed coordinate systems on the screen:

• Local coordinate system: the fixed coordinate system of the object.
• World coordinate system: the fixed coordinates of the world in which the object is placed.
• Screen coordinate system: the fixed coordinates of the screen.

An “object” is composed of multiple polygons and multiple objects composing one screen. Therefore, it is
possible to have multiple local coordinate systems.

Normally, vertex data for each polygon are specified in the local coordinate system. To convert these into
screen coordinates, the following conversions are necessary:

[]

[]
































































































→

→

+×=

+×=

SWz

SWy

SWx

Wz

Wy

Wx

SWij

Sz

Sy

Sx

WLz

WLy

WLx

Vz

Vy

Vx

WLij

Wz

Wy

Wx

Sx)Sy,(Sx,Wz)Wy,(Wx,

system coordinate Screensystem coordinate World

Wz)Wy,(Wx,Vz)Vy,(Vx,

system coordinate Worldsystem coordinate Local

9-4 Basic Geometry Library

Run-Time Library Overview

[WLij] is the world/local conversion matrix
[WLx, WLy, WLz] is the world/local translating vector
[SWij] is the screen/world conversion matrix
[SWx, SWy, SWz] are the screen/world translating vectors

Synthesizing this results in the following:























































































































































































































+×+××=

++××=

SWz

SWy

SWx

WLz

WLy

WLx

SWij

Vz

Vy

Vx

WLijSWij

Sz

Sy

Sx

SWz

SWy

SWx

WLz

WLy

WLx

Vz

Vy

Vx

WLijSWij

Sz

Sy

Sx

The synthesized coordinate conversion matrices between coordinate systems and translating vectors are
called:

[] [] []

[]















































+=

×=

SWz

SWy

SWx

WLz

WLy

WLx

 SWij

TRz

TRy

TRx

(TRV) vector gTranslatin

WLijSWijRij

(RTM)matrix Rotation

The local coordinate values may be calculated with the rotation matrix by adding vectors to one matrix
multiplied by the screen coordinate.

[]
















































→

+=
TRz

TRy

TRx

Vz

Vy

Vx

 Rij

Sz

Sy

Sx

Sz)Sy,(Sx,

system coordinate Screen

Vz)Vy,(Vx,

system coordinate Local

You can use SetRotMatrix() and SetTransMatrix() to set the constant rotation matrix and the constant
translating vector. They don’t need to be changed if the coordinate system and position don’t change.
However, when a different local coordinate system is used for each object, each will need to be separately
reset.

Note:Note:Note:Note: The local coordinate system setting method is up to the user.

You can use RotTrans() to find the screen coordinate value from the local coordinate system. Then
coordinate conversion can be performed by the previously-set rotation matrix and translating vector.

Using a screen coordinate value found with RotTrans(), a parallel projected image of the object may be
formed on the screen. In real vision, a distant object must be perspective-converted so that it appears
small.

Basic Geometry Library 9-5

Run-Time Library Overview

() 











 →

=
Sy

Sx
 h/Sz

SSy

SSx

SSy)(SSx,

system coordinate Screen

Sz)Sy,(Sx,

system coordinate Screen
conversion eperspectiv

h is the distance from the eye to the screen. Perspective conversion is done by multiplying the screen
coordinate X and Y components by h/Sz.

You can use RotTransPers() to perform RotTrans() and perspective conversion together.

Note:Note:Note:Note: In practice the following offset value is added in RotTransPers:

() 

















+=
OFY

OFX

Sy

Sx
 h/Sz

SSy

SSx

Also, the depth cueing interpolation coefficient p is calculated at the same time.

Light Source Calculation

The GTE uses a parallel light source complete diffusion reflection model for light source calculations. It
doesn’t rely on the position of the point of view, but determines the lighting on the basis of light source
attributes and polygon attributes.

The following describes a light source calculation for one vertex of a polygon:

Each vertex of a polygon has two attributes:

• Normal line vector (Nx, Ny, Nz)
• Vertex color (R, G, B)

The normal line vector is usually given by the local coordinate system.

The light source has three attributes:

• Light source vector (direction and intensity) (Lx, Ly, Lz)
• Color of the light source (Lr, Lg, Lb)
• The ambient color (BKr, BKg, BKb)

Since the light source is a parallel light source, there is no position information. Since it is the same for each
object, it is given in the world coordinate system. Other than the influence of the light source, the
background ambient color is present at all of the vertices.

The color (RR, GG, BB) in which the vertices are depicted on the screen is calculated as follows:

1) Convert normal line vector coordinates into the world coordinate system.

[]
































→

=
Nz

Ny

Nx

 WLij

NWz

NWy

NWx

(world) vector line Normal(local) vector line Normal

2) Calculate the “light source effect” by taking the inner product of the light source vector and the normal
line vector (world).

9-6 Basic Geometry Library

Run-Time Library Overview

[] [][]
































→

==

×

Nz

Ny

Nx

 WLij LzLyLx

NWz

NWy

NWx

 LzLyLxL

(L) effect source Light vectorsource Light (world) vector line Normal

3) Multiply the light source effect by the light source color for each item to get the color effect of the light
source (local color) for vertices.

































→

=

×

Lb

Lg

Lr

 L

LIb

LIg

LIr

(LI) effectcolor source LightLb)Lg,(Lr,color source Light (L) effect source Light

4) Add the light source color effects and the ambient colors to find the color effect of the whole
environment.

















































→

+=

+

BKb

BKg

BKr

Lb

Lg

Lr

 L

LTb

LTg

LTr

(LT) effectColor (BK)color Ambient (LI) effectcolor source Light

5) Multiply the vertex color by the color effect to find the vertex color for display.

LTbBBB

LTgGGG

LtrRRR

×=

×=

×=

For example, if there were three light sources in the above procedure, (1) and (2) would respectively be
as follows:

[]















































=

Nz

Ny

Nx

 WLij

Lz3Ly3Lx3

Lz2Ly2Lx2

Lz1Ly1Lx1

L3

L2

L1

Here, if the product of multiplying

[]WLij

Lz3Ly3Lx3

Lz2Ly2Lx2

Lz1Ly1Lx1

















is [Lij], then(1) and (2) can result in the following one-off matrix calculation.

[]































=

Nz

Ny

Nx

 Lij

L3

L2

L1

This matrix [Lij] is called the Local Light Matrix (LLM) in GTE.

Therefore, there is no need to convert the normal line vector for each polygon into the world coordinate
system. It is sufficient to calculate just the local light matrix [Lij] for each object.

Basic Geometry Library 9-7

Run-Time Library Overview

The local light matrix, like the rotation matrix, is a GTE constant matrix. The local light matrix [Lij] may
be set by SetLightMatrix().

Further, if there are three light sources, then there are three light source colors so that (3) above is as
follows:

































































































=

++=

L3

L2

L1

L3bL2bL1b

L3gL2gL1g

L3rL2rL1r

L3b

L3g

L3r

 L3

L2b

L2g

L2r

 L2

L1b

L1g

L1r

 L1

LIb

LIg

LIr

If this matrix,

[]















=

L3bL2bL1b

L3gL2gL1g

L3rL2rL1r

LRij

is [LRij], then (3) and (4) above for 3 light sources will be as follows:

[]















































+=

BKb

BKg

BKr

L3

L2

L1

 LRij

LTb

LTg

LTr

This matrix, [LRij] is called the Local Color Matrix (LCM) in GTE. The local color matrix and local light
matrix, like the rotation matrix, are GTE constant matrices. Each may be set by SetLightMatrix() and
SetColorMatrix().

Also, ambient color is called Back Color (BK) and may be designated by SetBackColor().

The procedures (1) (2) (3) (4) and (5) explained above may be summarized as follows based on up to
three light sources.

6) Normal line vector (local) → Light source effect (local light matrix)

[]































=

Nz

Ny

Nx

 Lij

L3

L2

L1

7) Light source effect → Color effect (local color matrix, back color)

[]















































+=

BKb

BKg

BKr

L3

L2

L1

 LRij

LTb

LTg

LTr

8) Color effect, vertex color → Vertex screen color

LTbBBB

LTgGGG

LTrRRR

×=

×=

×=

There is a function in the basic geometry library

NormalColorCol()

which performs this 6), 7) and 8) once. In GTE light source effect is called local color (LC).

9-8 Basic Geometry Library

Run-Time Library Overview

Normal Line Vector, Light Source Vector Direction

The normal line vector given to each vertex of a polygon should be placed in a direction from the front to
the back (pointing into the object). The light source vector is not the position of the light source, but should
be the direction of the rays.

GPU Code

The GTE has a register which maintains the GPU packet code. A function which outputs an RGB value
from a light source calculation outputs a GPU packet with the RGB value placed at the beginning of the
packet. The GPU packet and the RGB code are a single word, so the RGBcd portion of the packet may be
created with one memory write. The GPU packet cannot be properly generated if the GPU packet code
register is not specified correctly.

When the GPU packet code register is set, the GPU packet code is automatically copied to the upper 8
bits of the input primary color vector of each light source calculation function. You should use the
SetRGBcd() function when there is a function that has no input primary color vector.

Functions that copy the GPU packet code are as follows; those marked with * have no primary color input
vector.

DpqColorLight
DpqColor
DpqColor3
Intpl*
NormalColor*
NormalColor3*
NormalColorDpq
NormalColorDpq3
NormalColorCol
NormalColorCol3
ColorDpq
ColorCol
RotColorDpq
RotColorDpq3
RotAverageNclipColorDpq3
RotAverageNclipColorCol3
RotColorMatDpq
ColorMatDpq
ColorMatCol

Normal Line Clipping

Normal line clipping is a method of increasing drawing speed by not drawing polygons that are visible
from the back. Whether something is visible from the front or from the back is determined by the sign of the
Z component of the normal line screen coordinate system of the polygon.

Normal line clipping is effective when there is a closed curved surface such as that of a sphere. This is also
effective in reducing the so-called Z sorting problem.

Normal Line Clipping Function

The Z component of a polygon normal line screen coordinate system is found by converting the
coordinates of the normal line. It may also be found by the vector product of the two sides of the polygon.

Basic Geometry Library 9-9

Run-Time Library Overview

A function calculating the 2-dimensional vector product for normal line clipping, Normal Clip() is provided in
the basic geometry library. NormalClip() calculates a value to distinguish between the front and back of
triangles from the screen coordinates of three vertices. Front and back can be judged by whether the return
value is positive or negative, but the sign will change with the direction of the coordinate axis, and the order
of the vertices. Here we hypothesize a coordinate system.

Figure 9-1: Coordinate Axes

eye

Z+

Y+

X+

The viewpoint is in the negative direction of the Z axis. Looking from the view point, with the three vertices
arranged clockwise, NormalClip() will return a positive value.

Figure 9-2: Vertex Order

0 1

2

With the following performing the same calculation as NormalClip(), normal line clipping is performed,
coordinate calculation is halted and an incorrect sx, sy value is returned when the vector product is
negative or 0. When using these functions, the order of the vertices of a polygon must be modeled so that
they will rotate clockwise when seen from the front.

RotNclip()
RotNclip3()
RotNclip4()
RotAverageNclip3()
RotAverageNclip4()
RotAverageNclipColorDpq3()
RotAverageNclipColorCol3()

RotNclip4() and RotAverageNclip4() are functions which perform the same calculations as NormalClip().
Since these functions use the first three points and calculate a vector product value, you must use one of
the vertex orderings from Figure 8-3.

Figure 9-3: Four Vertices

0 1

2 3

0 1

3 2

or

(1) (2)

However, since GPU will not draw rectangles in the order indicated by (2), it is sensible to use (1).

9-10 Basic Geometry Library

Run-Time Library Overview

Depth Cueing

Depth cueing is an effect which makes objects that are at a distance appear hazy.

Depth cueing is accomplished by blending (through interpolation) the original polygon color together with
the far color, as a function of the Z-value of the screen coordinate system. If the far color is white, distant
objects will appear as if they were slightly obscured by fog. If the far color is black, distant objects will
appear as if they were dark.

The depth cueing methods can be broadly divided into two categories:

Method using vertex colors

Appropriate applications:

a) Non-textured polygons
b) Textured polygons in cases where one of the following conditions apply:

• If the far color is black or a dark color close to black.
• If the texture is a relatively bright color and if the texture is composed only of colors close to the far

color and without any dark points. In this case, the object may not completely blend with the far
color.

Method using texture colors

Appropriate applications:

a) General textured polygons. In particular, polygons that were not included in condition a) of the Method
using vertex colors described above for the method using vertex colors.

Implementation of Depth Cueing (Common Operations)

Interpolation coefficients

GTE has a feature for performing efficient depth cueing through non-linear interpolation of the far color. To
use this function it is necessary to set the depth for depth cueing using the functions SetFogNear,
SetFogFar, or SetFogNearFar.

Once the depth has been set, the non-linear interpolation coefficient p can be obtained by calling one of
the RotTransPers functions, with p having a value within the range 0 to 4096.

If Z is sufficiently small, the value of p will saturate at 0. If Z is sufficiently large, the value of p will saturate at
4096 (please refer to the descriptions for the SetFog* functions for more information).

In general, the depth cueing interpolation calculation can be represented by

interpolation calculation (o,f,p) = ((o x p) + (f x (4096-p))) / 4096

where o is the original color, f is the far color, and p is the interpolation coefficient.

In many cases, the far color may be the same as the background color, which means that the rendering of
the polygon will be unnecessary if p is 4096. For a given otz value, the otz2p function can be used to obtain
roughly the same value of p as the interpolation coefficient generated by GTE. Conversely, the p2otz
function can be used to determine otz from p. Please note that p2otz and otz2p are relatively expensive
functions that make use of division. It is also possible for the user to specify an independent value for the
interpolation coefficient p.

Method for preparing interpolated data (using CLUT or texture)

Data can be prepared for different values of p beforehand or data can be generated using a specific value
of p at runtime. DpqColor is a useful function for interpolating colors such as these. The far color should be
set beforehand with the SetFarColor function before calling DpqColor.

Basic Geometry Library 9-11

Run-Time Library Overview

Depth Cueing Using Vertex Colors

In the vertex color method, depth cueing is accomplished by interpolating the polygon vertex colors with
the far color as follows.

First, depth must be set using the SetFog* functions described above. Next, SetFarColor is used to set the
far color. Then the RotTransPers functions are used to obtain the interpolation coefficient p for each vertex
or each polygon. The value of p is passed to a function such as NormalColorDpq, which selects a vertex
screen color that has been interpolated with the far color.

Besides the NormalColorDpq* functions, the DpqColor* functions, *ColorDpq functions and the Intpl
function can also be used for this calculation.

Depth Cueing Using Textures

When textures are used, depth cueing is accomplished by interpolating the texture color and the far color.
The implementation method is different for each case.

What color to interpolate:

• Interpolation using CLUT colors
CLUT interpolation can be performed for textures that use a CLUT.

• Interpolation using the colors of the texture itself
For textures that do not use a CLUT, the only option is to interpolate with the colors of the texture
itself. For textures that use a CLUT, depth cueing can be applied when textures are selected
according to depth (e.g. by using the mip-map method). In these cases, interpolation based on texture
color can be used in conjunction with interpolation based on the CLUT.

Timing for generating interpolation data

• Interpolated data generated beforehand (CLUT or texture)
First, CLUT or texture data is generated for different values of the interpolation coefficient p then used
according to the Z and p values of the polygon or object to be rendered.

This method reduces the time required for runtime calculation, but from the perspective of memory
utilization, the amount of data that can be stored is less and the resolution of the interpolation
coefficient p cannot be set very high.

• Run-time generation of interpolated data (CLUT or texture)
In this method, CLUT or texture data is generated at runtime for a specific interpolation coefficient p.
This method requires calculation time during execution, but the generation of data for each frame
requires only the data for the original colors, so relatively little memory is used. Also, p can have a high
resolution.

Changing the rendered texture

• Changing the coordinates referred to by the polygon (CLUT or texture)
Data for different values of p are saved in free areas in the frame buffer. Depth cueing is implemented
by changing the texture coordinates, the CLUT ID, the texture page ID, etc. referred to by each
polygon.

• Changing the CLUT or texture in the frame buffer
In this method, the rendered texture is changed by substituting the CLUT or texture in the frame buffer.
Since polygon packets do not need to be changed, texture depth cueing can be performed easily by
rendering using the Gs library.

The following three methods can be used to modify data in the frame buffer:

1) Writing data using DR_LOAD primitives

9-12 Basic Geometry Library

Run-Time Library Overview

In this method, data is set up in DR_LOAD primitives and is written to the frame buffer. Large amounts
of data can be divided up into multiple DR_LOAD primitives and transferred. In these cases, it is more
efficient in terms of speed to divide up the data so that it is arranged as wide as possible in the frame
buffer. If one interpolation coefficient p can be used for a single CLUT or texture in a single frame, then
this information is entered into the beginning of the ordering table and rendered.

The operations below should be performed if multiple occurrences of the interpolation coefficient, p,
corresponding to depth, are to be used for a single CLUT or texture in a single frame. DR_LOAD
primitives are entered into a multiple places in the ordering table to transfer data for the values of p
corresponding to the otz values.

In the following examples, four values of p are used. Polygons are assumed to have been entered
beforehand into the ordering table OTag using DrawOTag or the Gs library.

There are primitives for writing pixel data directly to a specific region in the frame buffer. For details,
please refer to the sections on libgpu and SetDrawLoad().

Figure 9-4: Writing data using DR_LOAD primitives

4096

otz far near

A a b d e f g i D j k

c B h l

C

p2 p1 0

OT

P

Since polygons deeper than P=4096 do not merge into the
background, they are not drawn. The DR_LOAD primitive is
registered to the otz head when drawing is necessary.

a-1 : polygon

A-D : DR_LOAD primitive

A : DR_LOAD transfers (p = 4096 + p2) / 2) data
B : DR_LOAD transfers (p = p2 + p1) / 2) data
C : DR_LOAD transfers (p = p1 + 0) / 2) data
D : DR_LOAD transfers (p = 0) / 2) data

For a certain value of p and a rendering range from p1 to p2, a DR_LOAD (B in the Figure) for
transferring data using p is entered into the otz position corresponding to p2. A DR_LOAD (C in the
figure) for transferring data using the next p is entered into the otz position corresponding to p1.

For example, the rendering sequence for the case shown in the figure would be

A - a - b - c - d - e - B - f - g - h - C - i - D - j - k - l

Polygons a - e would be rendered with the data transferred using DR_LOAD A, and polygons f - h would
be rendered with the data transferred using DR_LOAD B.

2) Writing data using DR_MOVE primitives

In this method, data for different values of p is written into free areas of the frame buffer. The data is
transferred to the actual locations used for rendering before the polygons are rendered. As in the case

Basic Geometry Library 9-13

Run-Time Library Overview

with the DR_LOAD primitives above, data can be saved in the ordering table so that depth cueing can
be achieved on multiple polygons using a single CLUT or texture with values of p corresponding to the
depths of each of the polygons.

3) Using LoadImage to transfer data from main memory

In this method, the LoadImage function is used to transfer data from main memory to the area to be
used in the frame buffer. Note that using LoadImage too often will result in a heavy load on the CPU.
Thus, this method is not appropriate if multiple values of p need to be used for a single CLUT or texture
within a single frame.

Back Color, Far Color, BG Color

The following depth-queuing terms are used in the PlayStation:

• Back Color, BK Ambient color set by the function SetBackColor()
• Far Color, FC Far colorset by the function SetFarColor()
• BG Color The color applied in the background

When you wish to blend colors into the background with depth cueing, you match the far color and the
background color. Please note that back color and BG color differ.

Material Light Source Calculation with Material Quality

Light source calculation in PlayStation (without depth cueing) is summarized as follows:

1)

[]































=

Nz

Ny

Nx

 Lij

L3

L2

L1

2)

[]















































+=

BKb

BKg

BKr

L3

L2

L1

 LRij

LTb

LTg

LTr

3)

LTbBBB

LTgGGG

LTrRRR

×=

×=

×=

Notes:Notes:Notes:Notes:
(Nz, Ny, Nz): Normal vectors
[Lij]: Local light matrix (LLM)
(L1,L2,L3) Local light vector (LLV)
[Lri] Local color matrix (LCM)
(BKr, BKg, BKb): Back color (BK)
(RLT,GLT,BLT) Local color (LC)
(R, G, B): Original color vectors
(RR, GG, BB): Output color vectors

In this manual the calculation above is abbreviated in the following way:

9-14 Basic Geometry Library

Run-Time Library Overview

1) LLV = LLM x v0

2) LC = BK + LCM x LLV

3) v2 = v1 x LC

Following the calculation of (1) you may also obtain LLV again with each item of LLV squared in the
following manner:

1) LLV = LLM x v0

2) LLV = LLV2 = (L12, L22, L32)

3) LC = BK + LCM x LLV

4) v2 = v1 x LC

If this is done, the lighted portion on screen will become narrower and the material quality of the object will
appear to have changed. The basic geometry library provides

• RotColorMatDpq
• ColorMatDpq
• ColorMatCol

as functions with material quality.

Functions with Three or Four Vertices

There are functions in the basic geometry library which perform one-off coordinate conversion of polygons
with three or four vertices, and light source calculation.

For example, RotTransPers3() and RotTransPers4() functions do one-off coordinate conversion of three and
four vertex polygons respectively. Also NormalColorCol3 and NormalColorDpq3 convert the 3 vertex light
source calculation once.

By using these functions, triangles and rectangles with independent vertices may be drawn at high speed.

libgte Argument Format

In the GTE, all numerals are expressed by fixed point numbers. For example each component of the
rotational matrix is a (1,3,12) format fixed point number. (1,3,12) here refer to

• Sign : 1 bit
• Integer section: 3 bits
• Fractional part: 12 bits

Because of this RotTrans (&v0, &v1, &flag) is calculated in the following manner.

[]

















































































+
>>×+×+×
>>×+×+×
>>×+×+×

=

+=

TRz

TRy

TRx

12v0.vz)R22v0.vyR21v0.vx(R20

12v0.vz)R12v0.vyR11v0.vx(R10

12v0.vz)R02v0.vyR01v0.vx(R00

TRz

TRy

TRx

v0.vz

v0.vy

v0.vx

 Rij

v1.vz

v1.vy

v1.vx

Basic Geometry Library 9-15

Run-Time Library Overview

12v0.vz)R22v0.vyR21v0.vx(R20TRZv1.vz

12v0.vz)R12v0.vyR11v0.vx(R10TRYv1.vy

12v0.vz)R02v0.vyR01v0.vx(R00TRXv1.vx

>>×+×+×+=

>>×+×+×+=

>>×+×+×+=

v0, v1 are of type SVECTOR.

typedef struct{
short vx, vy;
short vz, pad;

} SVECTOR;

[Rij] is a rotation matrix, (TRX, TRY, TRZ) are translating vectors. Therefore the formats of V0 and V1 less
than the decimal point are the same as (TRX, TRY, TRZ).

The format of (TRX, TRY, TRZ) is (1, 31, 0) so that v0 is (1, 15, 0) v1 is (1, 31, 0).

Recommended Format

The recommended format for GTE constants is shown below. Though formats other than this may be
calculated, it becomes difficult and it must be taken into account that a 12-bit shift is built into the GTE.
Please refer to the libgte reference manual for the argument format of each function.

• Rotational matrix [Rij] (1, 3, 12)
• Translating vector (TRX, TRY, TRZ) (1, 31, 0)
• Local light matrix [Lij] (1, 3, 12)
• Local color matrix [L (R, G, B) i] (1, 3, 12)
• Back color (RBK, GBK, BBK) (0,32,0)(0...255)
• Far color (RFC, GFC, BFC) (0,32,0)(0...255)

libgte Function Flag Variables

Flag variables are appended to the Rot...() coordinate calculation function family for performing clipping.
The coordinate calculation functions are as follows:

• RotTransPers()
• RotTransPers3()
• RotTrans()
• RotTransPers4()
• RotAverage3()
• RotAverage4()
• RotNclip()
• RotNclip3()
• RotNclip4()
• RotAverageNclip3()
• RotAverageNclip4()
• RotColorDpq()
• RotColorDpq3()
• RotAverageNclipColorDpq3()
• RotAverageNclipColorCol3()
• RotColorMatDpq()

These flags return to their original state immediately after the functions have finished their coordinate
transformations.

Functions doing coordinate transformations on 3 or 4 vertices, such as RotTransPers3, or RotTransPers4,
return an OR of the coordinate transformation result for each vertex. When RotNclip4 or RotAverageNclip4

9-16 Basic Geometry Library

Run-Time Library Overview

return a value of -1 (that is, when a vertex cannot be calculated due to a normal clip) it is treated as if it
were an OR of the result from a 3-vertex coordinate transformation.

The flag bits are as follows:

Table 9-1: Flag Bit Settings

Bit Contents

31 (30) | (29) | (28) | (27) | (26) | (25) | (24) | (23) | (18) | (17) | (16) | (15) | (14) | (13) | (11)
30 Calculation overflow (>=2^43)
29 Calculation overflow (>=2^43)
28 Calculation overflow (>=2^43)
27 Calculation overflow (<-2^43)
26 Calculation overflow (<-2^43)
25 Calculation overflow (<-2^43)
24 The output value exceeds (-2^15, 2^15)
23 The output value exceeds (-2^15, 2^15)
22 The output value exceeds (-2^15, 2^15)
21 Output value exceeds(0, 2^8)
20 Output value exceeds (0, 2^8)
19 Output value exceeds (0, 2^8)
18 The value of Z in the screen coordinate system exceeds (0, 2^16)
17 The Z coordinate is smaller than h/2 after perspective transformation
16 Calculation overflow (>=2^32)
15 Calculation overflow (<-2^32)
14 The X coordinate exceeds (-2^10, 2^10) after perspective transformation
13 The Y coordinate exceeds (-2^10, 2^10) after perspective transformation
12 The value of p exceeds (0, 2^12)
11~0 Not used

Note:Note:Note:Note: h is the distance between the viewpoint and the screen.

The following functions return 16-bit flags:

• RotTransPersN
• RotTransPers3N

Basic Geometry Library 9-17

Run-Time Library Overview

The 16-bit flag bits are as follows:

Table 9-2: 16-Bit Flag Bit Settings

Bit Contents

15 Calculation overflow (>=2^43)
14 Calculation overflow (>=2^43)
13 Calculation overflow (>=2^43)
12 The value of X in the screen coordinate system before perspective transformation

exceeds (-2^15, 2^15)
11 The value of Y in the screen coordinate system before perspective transformation

exceeds (-2^15, 2^15)
10 The value of Z in the screen coordinate system exceeds (-2^15, 2^15)
9 Output value exceeds (0, 2^8)
8 Output value exceeds (0, 2^8)
7 Output value exceeds (0, 2^8)
6 The value of Z on the screen coordinate system exceeds (0, 2^16)
5 The Z coordinate is smaller than h/2 after perspective transformation
4 Calculation overflow (>=2^32)
3 Calculation overflow (>=2^32)
2 The X coordinate exceeds (-2^10, 2^10) after perspective transformation
1 The Y coordinate exceeds (-2^10, 2^10) after perspective transformation
0 The value of p exceeds (0, 2^12)

Note:Note:Note:Note: h is the distance between the viewpoint and the screen.

About libgte Mesh Functions

The basic geometry library supports two types of triangular mesh data. By using mesh data, the number of
vertex calculations and the volume of data can be reduced.

One is called Strip Mesh and the vertices are arranged in zig-zags as shown below:

Figure 9-5: Strip Mesh

0

1

2

3

4

The other is called Round Mesh and the vertices surround vertex 0 as shown below:

Figure 9-6: Round Mesh

1

2

0

3

4

In either case, when the first triangle 012 is clockwise in this order, 012 is displayed and the fronts and
backs of the other three triangles will be determined by this triangle.

9-18 Basic Geometry Library

Run-Time Library Overview

However, when performing light source calculation (shading and depth cueing) with this type of data,
normal line clipping cannot be performed so the calculation is not always speeded up. Mesh data is
effective in improving calculations with “no shading and depth cueing” and “flat shading.”

Changing Screen Offsets

There are two methods for altering the PlayStation screen offset. One is to use the previously mentioned
libgpu function SetDefDrawEnv(). The other is to use the SetGeomOffset() function provided in the basic
geometry library.

PMD Functions

Libgte has PMD functions that link GPU packets to the created OT, after they perform coordinate
transformations, when reading the data formats shown below. GPU packet data is preset for constants,
color variables, texture variables, and the like, so drawings can be done at high speed if just the coordinate
variables are set.

PRIMITIVE Group

In PMD data, when polygons having the same attributes are grouped together and the PRIMITIVE Gp
object components (primitives) drawing packet is drawn up, one packet represents one primitive.

The primitive defined in PMD is different to the drawing primitive handled by libgpu. Together with the
processing of the perspective conversion by libgs it is also converted to the drawing primitive.

One primitive group is shown below.

Figure 9-7: PACKET Gp Configuration

bit31(MSB) bit0(LSB)

TYPE NPACKET

Packet Data #0

Packet Data #1

Packet Data #2
:

NPACKET:Number of packets
TYPE : Packet type

Table 9-3: 4-Type Bit Configuration

bit No. When 0 When 1

16 Triangle Quadrangle
17 Flat Gouraud
18 Texture-On Texture-Off
19 Independent Vertex Public Vertex
20 Light Source Calculation OFF Light Source Calculation ON
21 With Back clip No Back clip
22-31 (Reserved)

The Packet Data configuration changes with the TYPE value. The separate TYPE Packet Data configuration
is as follows:

Basic Geometry Library 9-19

Run-Time Library Overview

Note 1: In order to make the Primitive section (POLY_***) in the configuration correspond to the double
buffer, two sets are provided.

Both contents must be initialized beforehand.

Note 2: Bit 20,21 have no effect on the Packet Data configuration.

TYPE Packet Data Configurations

TYPE=00 (Triangle/Flat/Texture-On/Independent Vertex)

struct _poly_ft3 {
POLY_FT3 pkt[2];
SVECTOR v1, v2, v3;
}

TYPE=01 (Quadrilateral/Flat/Texture-On/Independent Vertex)

struct _poly_ft4 {
POLY_FT4 pkt[2];
SVECTOR v1, v2, v3, v4;
}

TYPE=02 (Triangle/Gouraud/Texture-On/Independent Vertex)

struct _poly_gt3 {
POLY_GT3 pkt[2];
SVECTOR v1, v2, v3;
}

TYPE=03 (Quadrilateral/Gouraud/Texture-On/Independent Vertex)

struct _poly_gt4 {
POLY_GT4 pkt[2];
SVECTOR v1, v2, v3, v4;
}

TYPE=04 (Triangle/Flat/Texture-Off/Independent Vertex)

struct _poly_f3 {
POLY_F3 pkt[2];
SVECTOR v1, v2, v3;
}

TYPE=05 (Quadrilateral/Flat/Texture-Off/Independent Vertex)

struct _poly_f4 {
POLY_F4 pkt[2];
SVECTOR v1, v2, v3, v4;
}

TYPE=06 (Triangle/Gouraud/Texture-Off/Independent Vertex)

struct _poly_g3 {
POLY_G3 pkt[2];
SVECTOR v1, v2, v3;
}

TYPE=07 (Quadrilateral/Gouraud/Texture-Off/Independent Vertex)

struct _poly_g4 {
POLY_G4 pkt[2];
SVECTOR v1, v2, v3, v4;
}

TYPE=08 (Triangle/Flat/Texture-On/Shared Vertex)

struct _poly_ft3c {

9-20 Basic Geometry Library

Run-Time Library Overview

POLY_FT3 pkt[2];
long vp1, vp2, vp3;
}

TYPE=09 (Quadrilateral/Flat/Texture-On/Shared Vertex)

struct _poly_ft4c {
POLY_FT4 pkt[2];
long vp1, vp2, vp3, vp4;
}

TYPE=0a (Triangle/Gouraud/Texture-On/Shared Vertex)

struct _poly_gt3c {
POLY_GT3 pkt[2];
long vp1, vp2, vp3;
}

TYPE=0b (Quadrilateral/Gouraud/Texture-On/Shared Vertex)

struct _poly_gt4c {
POLY_GT4 pkt[2];
long vp1, vp2, vp3, vp4;
}

TYPE=0c (Triangle/Flat/Texture-Off/Shared Vertex)

struct _poly_f3c {
POLY_F3 pkt[2];
long vp1, vp2, vp3;
}

TYPE=0d (Quadrilateral/Flat/Texture-Off/Shared Vertex)

struct _poly_f4c {
POLY_F4 pkt[2];
long vp1, vp2, vp3, vp4;
}

TYPE=0e (Triangle/Gouraud/Texture-Off/Shared Vertex)

struct _poly_g3c {
POLY_G3 pkt[2];
long vp1, vp2, vp3;
}

TYPE=0f (Quadrilateral/Gouraud/Texture-Off/Shared Vertex)

struct _poly_g4c {
POLY_G4 pkt[2];
long vp1, vp2, vp3, vp4;
}

The pkt[] is the corresponding drawing primitive packet, the v1~v4 values are the vertex coordinate values,
and the vp1~vp4 values are the offsets from the head of the shared coordinates string.

VERTEX

The VERTEX section is the SVECTOR structure array which displays the shared vertex. One structure
format is shown below:

Figure 9-8: VERTEX

MSB LSB

VY VX

- - VZ

Basic Geometry Library 9-21

Run-Time Library Overview

VX,VY, VZ: x,y,z values of vertex coordinates (16 bit integers)

SMD, RMD Functions

The SMD and RMD functions are high-speed versions of the PMD function. They both process the same
data format as the PMD function. The SMD function usually performs normal clipping, while the RMD
function usually does not.

Polygon Division

The PlayStation is designed to form many small polygons efficiently. Because larger polygons are broken
down into smaller ones using division, clipping is performed more efficiently and texture distortion is
reduced.

The polygon division process uses the automatic division attribute of LIBGS that is applied to objects, or it
can be invoked by directly calling one of the functions listed below.

Table 9-4: Polygon Division Functions

Function name Corresponding primitive

DivideF3 Flat Triangle
DivideF4 Flat Quadrilateral
DivideFT3 Flat Texture Triangle
DivideFT4 Flat Texture Quadrilateral
DivideG3 Gouraud Triangle
DivideG4 Gouraud Quadrilateral
DivideGT3 Gouraud Texture Triangle
DivideGT4 Gouraud Texture Quadrilateral

9-22 Basic Geometry Library

Run-Time Library Overview

Run-time Library Overview

Chapter 10:
Extended Graphics Library

Table of Contents

Overview 10-3
Library and Header Files 10-3
Libgs features 10-3

Coordinate Systems 10-4
Coordinate System Initialization 10-4
Order of Rotation/Translation 10-4
Clearing Flags 10-5
Examples of Coordinate System Setting 10-5

Objects 10-5
Object Initialization 10-6
Object Movement (Hierarchical Structuring) 10-6
Object Attribute Control 10-6

Viewpoint 10-7
Viewpoint Setting 10-7
Screen Setting 10-8

Light Sources 10-8
Light Source Setting 10-8
Ambient Light 10-8
Depth Cueing 10-9
Material Lighting 10-9

Drawing Priority Order (Ordering Table) 10-9
GsOT 10-10
GsOT_TAG 10-10
OT Initialization 10-10
Multiple OTs 10-10
OT Compression 10-10
Z-Sort Problem 10-10
OT Double Buffer 10-11

Frame Double Buffer 10-11
Double Buffer Expression 10-11
Frame Double Buffer During Interlace 10-11

Clipping 10-12
Two-dimensional Clipping 10-12
Three-dimensional Clipping 10-12
Near Clipping Problem 10-12

Packet Preparation Function 10-12
Packet Buffer 10-12
Preset Packets 10-13
TMD Sort 10-14
Packet Creating Functions 10-14

Packet Area 10-16
Packet Double Buffer 10-16

10-2 Extended Graphics Library

Run-time Library Overview

Drawing 10-16
Processing Flowchart 10-16

Jump Tables 10-17
Purpose 10-17
Usage 10-17

Scratch Pad Usage Volume 10-18
Scratch Pad Consumption Status 10-18
Scratch Pad Consumption Volume 10-18
Method for Common Use of Scratch Pad by the User Program and Library 10-18

mip-map Library 10-18
Usage Method 10-19
Texture Location 10-20
Polygon Vertex 10-20

Extended Graphics Library 10-3

Run-time Library Overview

Overview

The extended graphics library (libgs) integrates the 2D and 3D graphics systems used in libgpu and libgte.
It is designed to work well with the standard graphics file formats that can be created by PlayStation
authoring tools:

• The TIM format stores image resolution, color numbers and color look-up table information.
• The TMD format stores multiple objects, scale information and texture address information.
• HMD is a new format that was added in version 4.0 of the libraries. See Chapter 18, “HMD Library”, for

more information about this format.

In contrast with the libgpu and libgte libraries which process polygon-level data, libgs processes data by
object units (groups of polygons), allowing 3D programs to be prototyped easily. By adding attributes to
objects, it’s easy to create special effects.

Using libgs involves extra overhead compared to using libgpu and libgte. However, libgs is an open architecture.
Therefore, once you are ready to produce your game, you can optimize it by adding user-defined functions (via a
jump table) that use libgpu and libgte services.

Library and Header Files

To use the extended graphics library, you must link with the library file libgs.lib .

Source code must include the header file libgs.h .

Libgs features

The main features of libgs are:

• Hierarchical coordinate systems

Any object’s coordinate system can be designated as a parent or a subordinate of another. Changes
to the parent coordinate system are automatically applied to the subordinates.

• Light source calculation (3 light sources, depth queuing , ambient)

Libgs performs automatic lighting calculations using parameters set by the user.

• Automatic division of polygons

Libgs can automatically sub-divide large polygons to avoid problems associated with clipping.

• Semi-transparent processing

Objects and/or their textures can be drawn as semi-transparent/translucent by setting the appropriate
attributes

• Perspective texture mapping of objects.

• Viewpoint control

You can easily manipulate the viewing angle using the view structures defined within libgs.

• Z-sort processing

You can sort and draw objects according to their Z-depth values by using the GsOT structure and the
GsSort functions.

• OT initialization hierarchic compression

Objects with greatly differing Z values may be sorted into separate OTs (Z-sort ordering tables) and
then linked into one OT prior to drawing.

10-4 Extended Graphics Library

Run-time Library Overview

• Frame double buffer

Libgs implements a graphics double-buffer system , in order to avoid the problems associated with
drawing into memory being displayed. Initialization and switching of the buffers are easily performed.

• Automatic adjustment of aspect ratio

When the view aspect ratio is not normal dot, the display of an object’s vertical is automatically
adjusted to appear as a normal dot aspect ratio.

• 2D clipping offset processing

Libgs performs 2D clipping according to values set by the user. In addition, you can define a 2D offset,
which will be added to the screen coordinates of all objects prior to display.

• Sprite/BG/Line

Libgs provides structures and routines for easily displaying 2D sprites, lines, and cell-based scrolling
backgrounds.

• libgpu/libgte coexistence

Libgs combines Libgs(2D) and Libgte(3D) into a complete, easy to manage, 3D graphics pipeline.

Coordinate Systems

GsCOORDINATE2 is a structure describing a libgs coordinate system. The coordinate system is a
hierarchical structure which takes the world coordinate system as the most significant, and it is integrated
from a lower level to a higher level.

GsCOORDINATE2 contains members that describe the coordinate system and a work area for speeding
up coordinate calculations. The parameters which describe the coordinate system are MATRIX type. The
MATRIX parameters describe the coordinate system relative to its parent coordinate system. Also, for the
size of the coordinate system space, X, Y and Z are all 32 bits.

The definition of the GsCORDINATE2 is as follows:

struct GsCOORDINATE2{
unsigned long flg; /*0: coord has been rewritten 1: workm

values are still valid*/
MATRIX coord; /*A 3 x 3 matrix containing coordinate

rotation translation and scale info*/
MATRIX workm; /*Result of multiplication of coord with

the WORLD coordinate system*/
GsCOORD2PARAM *param; /*rotation, scale, and translation

parameters*/
GsCOORDINATE2 *super; /*pointer to superior coordinate system*/
GsCOORDINATE2 *sub; /*pointer to subordinate coordinate

system*/
};

Coordinate System Initialization

GsInitCoordinate2() initializes the members of GsCOORDINATE2. You can also set the members directly.

Order of Rotation/Translation

Rotation is executed first, followed by translation.

The order of rotation ,when the rotation matrix is created by the function RotMatrix() and set in
GsCOORDINATE2, is [Z → Y → X].

Extended Graphics Library 10-5

Run-time Library Overview

Clearing Flags

When requesting local-to-world matrix from the hierarchical coordinate system, optimization is
accomplished by setting the flg member of a previously calculated coordinate system to 1 and preserving
the results stored in the member workm.

If the parameters of a GsCOORDINATE2 have been rewritten, always remember to set flg to zero,
indicating that the contents of workm have already been used. Recalculation will not be performed unless
flg is zero.

If parent coordinates are modified, this is automatically reflected in all of the child coordinates, so there is
no need to clear the child coordinate’s flag.

Examples of Coordinate System Setting

Examples of translation and rotation are presented below.

Example 1: Translation
GsCOORDINATE2 sample_coord; /*coordinate system which sets

translation */
int x,y,z; /*amount of parallel shift*/

sample_coord.coord.t[0] = x;
sample_coord.coord.t[1] = y;
sample_coord.coord.t[2] = z;

Example 2: Rotation
GsCOORDINATE2 sample_coord; /*coordinate system in which rotation is

set */
SVECTOR rot; /*rotation angle set (x,y,z)*/
MATRIX tmp1; /*rotation matrix requested*/

RotMatrix(&rot, &tmp1); /*when RotMatrix() is used the order of
rotation is zyx*/

sample_coord.coord = tmp1

Objects

You manipulate objects by means of 3D object handlers. This section explains the basic object handler
used by libgs, GsDOBJ2. The other types of object handlers are GsDOBJ3 and GsDOBJ5.

GsDOBJ2 is defined as follows:

struct GsDOBJ2{
unsigned long attribute;
GsCOORDINATE2 *coord2;
unsigned long *tmd;
unsigned long id;

}

coord2 is a pointer to the coordinate system. An object’s location may be controlled by setting the
members of the corresponding GsCOORDINATE2 structure.

attribute is for setting object attributes. These can be general attributes such as display/non-display or
special effects such as switching of the light source calculation method.

10-6 Extended Graphics Library

Run-time Library Overview

Object Initialization

To handle an object with GsDOBJ2, the read-in TMD data and the handler must be linked. To do this, you
can use GsLinkObject4(). This function sets which object of the TMD data is to be linked with GsDOBJ2,
by setting its tmd member to the top address of that object.

Object Movement (Hierarchical Structuring)

Different objects may be linked by defining a hierarchy in the coordinate system in which the object’s
GsDOBJ2 member coord2 is specified as another objects superior or subordinate GsCOORDINATE2.

When defined in this way, the movement of object 2 links with object 1. The movement of object 1 does
not link with object 2.

Location is set at coordinate 1 when moving object 1 and object 2. When moving only object 2, it is set at
coordinate 2.

Figure 10-1: Hierarchical Structuring

GSDOBJ2 COORDINATE2

Object1 → Coordinate1
↑

Object2 → Coordinate2

Object Attribute Control

The bits of the GsDOBJ2 attribute member control several properties of objects.

Material Attenuation

This sets the relationship between normal vector inclination and brightness attenuation when performing
light source calculations. This parameter is used to change the look of an object.

Values that may be specified are 0_3, and the maximum attenuation is 3. As the attenuation value
becomes higher, the time taken for calculation becomes longer.

This parameter may be ignored in cases when material lighting has no effect in light source calculation.

Material attenuation is not supported in the current version.

Lighting Mode

This determines the method of light source calculation.

The function GsSetLightMode() sets the default method of calculation, so this bit should be set only when
you wish to control the light source calculation method object by object.

Light Source Calculation Off

This is the bit for forcibly cancelling light source calculation.

If this bit is set, processing speed is increased because light source calculation for the object will be
skipped.

Near Clipping

If this bit is set, in cases where the polygon end point is very close to the viewpoint (distance between
viewpoint and polygon < (distance between viewpoint and screen) /2), a polygon that has overflowed
during perspective transformation will not be simply clipped, but can be forcibly displayed, even if its shape
is distorted.

Extended Graphics Library 10-7

Run-time Library Overview

Back Clipping

A polygon has a front and back determined by the order of its vertices. In the case of a convex object, it is
not necessary to display the back face, so a back-facing polygon will be clipped. However, if this bit is set,
a back-facing polygon can be displayed.

The current version does not support back clipping.

Semi-transparency Rate

In addition to the normal semi-transparency mode, there are three other semi-transparency modes: 100%
addition and substraction, and 25% addition. These modes are controlled.

Table 10-1: Semi-transparency Rates

Value Background Primitive

0 0.5 0.5
1 1.0 1.0
2 1.0 -1.0
3 1.0 0.25

In order to render a texture-mapped polygon semi-transparent, you must set the most significant bit (STP
bit) of the texture color field (the CLUT field when in texture pattern or index color).

Also, semi-transparent processing is possible in pixel units by the STP bit.

Display Control

This controls whether an object will be displayed or not displayed.

When it is not displayed it is excluded from calculation, so the load is lighter.

Automatic Division

This operation subdivides an object’s component polygons at the time of execution. Select the number of
divisions from among 2x2, 4x4, 8x8,16x16, 32x32 or 64x64.

You can use this operation to eliminate the problems accompanying a perspective transformation, such as
texture distortion and Near clipping. You must take care that memory use and processing speed are not
adversely impacted as the number of divisions increase.

GsSortObject4() and GsSortObject5() are functions that create packets capable of automatic division.
When using automatic division, you must pass the scratch pad address, used as a working argument, in
the last argument of the packet creation function.

Viewpoint

In 3D graphics, the resulting 2D image is a projection of 3D space onto a “window”(viewing-plane), at a
specified distance in front of the viewpoint. The viewpoint and “window” value must be set in order to
project an image.

Viewpoint Setting

Viewpoint setting is executed by substituting values in the GsRVIEW or GsVIEW2 structure members and
calling the GsSetRefView2() or GsSetView2() functions.

The difference between GsRVIEW2 and GsVIEW2 is in the viewpoint setting method.

GsRVIEW2 sets the viewpoint by setting the coordinates of the viewpoint and a reference point. GsVIEW2
sets the viewpoint by directly setting a transformation matrix to the viewpoint coordinate system.

10-8 Extended Graphics Library

Run-time Library Overview

Both GsVIEW2 and GsRVIEW2 can set a coordinate system which becomes the standard in super. For
example, if the standard coordinate system is treated as a world coordinate system, it becomes an
objective viewing camera, and if the coordinate systems of each object are taken as local coordinate
systems, it becomes a subjective viewing camera for that object.

Screen Setting

This sets the distance between the screen and the viewpoint.

The distance between the viewpoint and the screen is called projection (h). Projection is set by the
GsSetProjection() function.

The vertical and horizontal of the screen are equal to the resolution of the window. For example, if the
resolution is 640/480, the horizontal of the screen is 640 and the vertical is 480.

When the window resolution is not normal dot, that is to say when the window resolution aspect ratio is not
4 to 3, the vertical is adjusted. For example, in the case of 640/240 dot, the vertical of an object is
displayed by reducing it by 1/2. In appearance, this is the same as a normal dot aspect ratio.

To use the libgs three-dimensional service, it is necessary to execute the GsInit3D() function and initialize
the screen coordinates. In this way, the center of the screen is the origin of the screen coordinates.

Figure 10-2: Viewpoint and Screen

h
Projection

Visual point

Screen

Projection adjusts the angle of an image. If projection is large, the image angle is narrow and is close to
parallel projection. If projection is small, the image angle widens, and it becomes a picture in which the
impression of perspective is emphasized.

Light Sources

A maximum of 3 parallel light sources may be set with libgs. A parallel light source is a light source in which
the brightness is determined only by the light source and the angle of the polygon.

A light source is set by the direction of the light source and its color.

Light Source Setting

The light source is set in the system by setting the GsF_Light structure parameter and executing the
GsSetFlatLight() function.

Also, since it is possible to set up to 3 parallel light sources, the GsSetFlatLight() argument ID is set to 0-2.

Ambient Light

Ambient light is the surrounding light. Even though light does not directly strike it, the shape of an object
may be seen with the surrounding light. Ambient light is created in order to achieve this type of
phenomena.

Extended Graphics Library 10-9

Run-time Library Overview

For example, if the spot where the light strikes is 1 and spots where the light does not strike are 0.5,
GsSetAmbient()is executed as follows (ONE expresses the fixed-point 1):

GsSetAmbient(ONE/2,ONE/2,ONE/2);

In general, the image becomes warm when the ambient light values are increased and cool when they are
decreased.

Depth Cueing

When varying the brightness of an object according to the distance from the viewpoint, distant objects may
be dimmed. This is called depth cueing.

With libgs, depth cueing may be executed normally for all polygons that are not textured. Depth cueing is
possible for texture-mapped polygons only when the color is black.

In order to execute depth cueing, call GsSetLightMode(1) or GsSetLightMode(3) and specify the depth
cueing light source calculation.

Then set GsFOGPARM rfc,gfc and bfc as background colors and set to libgs by GsSetFogParam().

When background colors are made whitish, the result is the FOG effect.

When the background color is made black this results in a “night-time” effect. This is effective when you are
making something like a dungeon difficult to see by darkening the distance.

Depth cueing can be performed on texture-mapped polygons at any time by switching the length of the
CLUT. This method is not currently supported in libgs.

Moreover, please be aware that background color and ambient color are generally quite different to each
other.

Material Lighting

The intensity of light is determined by the angles of the polygon and the light source. However, the feel of a
material can be changed to metallic by making the light attenuation curve steeper. This is called material
lighting.

Execute GsSetLightMode(2) or GsSetLightMode(3) to execute material lighting.

Control of attenuation is executed by setting the material attenuation bit of the member attribute, object by
object. The higher the value, the steeper the attenuation and the more the metallic feel increases.

However, this is not possible with the current version.

Drawing Priority Order (Ordering Table)

Z-sort is adopted as a method of hidden-surface removal for the PlayStation and, in order to speed up the
performance of Z-sort, the concept of an ordering table (OT) has been introduced. Hereafter, Z refers to a
coordinate value on the vertical direction axis perpendicular to the view plane; in other words, the distance
between the screen and the polygon.

An ordering table is a kind of Z ruler applied in memory. Each graduation of the ruler may hold any number
of polygons.

Sorting is executed according to the Z value of a polygon by placing the polygon at the graduation equal to
that Z value. This means that if polygons are placed all the way up to the end, all the polygons will hang on
the ruler according to their Z values. Hidden-surface removal is achieved by transmitting this to a rendering
chip and drawing the polygons at the end of the OT(with the largest Z value) first..

10-10 Extended Graphics Library

Run-time Library Overview

GsOT

libgs OTs are handled by a structure called GsOT. A pointer (member org) to an actual OT, and parameters
that indicate the attributes of that OT, are stored in this structure.

In libgs, 14 stages, from the 1st power of 2 to the 14th power of 2, may be set in the OT member length as
Z graduation resolutions.

GsOT_TAG

GsOT_TAG indicates 1 graduation of the ruler. A an actual OT is defined as an array of GsOT_TAG.

For example, if its length is 4, an actual OT is an array of the 4th power of 2, that is to say 16 OT_TAG.

OT Initialization

An OT is initialized by the function GsClearOt(). GsClearOt() takes 3 arguments, offset, point and otp. otp is
a pointer to the OT handler. offset and point are explained below.

When an OT is initialized, the polygons are unlinked, and only then is a re-sort possible. Therefore, it is
always necessary to initialize an OT prior to executing a sort.

Multiple OTs

libgs allows multiple OTs. Multiple OTs may be sorted by the GsSortOt() function. At this time, the value
referred to as the representative value Z of an OT is the GsOT member point.

It is possible to control the sorting order by using multiple OTs. For example, if local OTs are prepared
object by object, and finally collated by sorting the local OTs, sorting by object units is possible.

This is effective when the relationship between before and after is already known, in such cases as when a
helicopter is looking down from above at cars which are being driven on a road.

Also, multiple OTs can also be used to achieve a “split-screen” effect. For example, by drawing one OT to
the top half of the drawing area, switching the drawing environment and viewpoint settings, and drawing
the second OT to the bottom half of the drawing area, two different views can be shown onscreen
simultaneously.

OT Compression

Sort speed will be increased by using OTs. However, OTs consume a considerable amount of memory.

There is a method of reducing OT resolution by shortening length in order to restrict the amount of memory
consumption. However, sort resolution is also reduced, and a polygon flicker phenomenon (Z-sort problem)
will readily occur due to error in Z relationships.

Therefore, there is a method of using an offset as a method of reducing OT memory consumption without
reducing resolution. This may be used when it is known that the Z values of the polygons sorted are greater
than a certain value. If this value is delivered to GsClearOt() as the offset, memory consumption will be
reduced, since OT does not store the part up to offset in memory.

Z-Sort Problem

A problem will always occur when using Z-sort to perform hidden-surface removal. This problem is that the
polygons will flicker due to errors in priority ordering.

This is caused by the fact that the Z values referenced when determining priority order are referenced 1 per
polygon. With libgs, the polygon center of gravity Z is referred to when sorting. However, the phenomenon

Extended Graphics Library 10-11

Run-time Library Overview

is liable to occur with a polygon of particularly long depth since it is sorted with only one average Z value,
despite the Z value differing greatly across the polygon.

There is a method of dividing polygons into smaller polygons to which resolves the the Z-sort problem.
However, with this method, the number of polygons is increased.

As another countermeasure, there is a sort by object units. When the Z relationship is clear for every object,
if this condition is reflected when sorting, sorting may be achieved without mutual interference of objects.

OT Double Buffer

An OT in which polygons are linked cannot be accessed while that OT is being drawn. For this reason, you
must prepare 2 OTs when drawing in the background, and use the OT not being used for drawing for
sorting. This is the OT double buffer.

Frame Double Buffer

The PlayStation has a two-dimensional frame buffer, and the image displayed in the window can be
reproduced in video memory as is.

The screen can be switched without being disturbed during vertical base line synchronization (V Blank). If
the switched screen is accessed during the time when the television screen is being displayed, the screen
will become disturbed.

Due to this both the screen being displayed and the switched screen are necessary. This is called the
display double buffer.

In libgs the double buffer is defined by GsDefDispBuffer(). Switching of this defined double buffer is done by
GsSwapDispBuff(). GsGetActiveBuff() can be used to determine which double buffer is currently being
drawn.

Double Buffer Expression

Double buffering may be achieved by altering the location of the displayed area within the frame buffer. The
upper left point of the display area (starting point) does not necessarily have to be in the upper left point of
the frame buffer.

Drawing that goes to the frame buffer must have an offset attached. You may choose from two methods of
offsetting with libgs.

One method is to put the offset at the libgte level. If you choose this method, the double buffer offset is
added at the stage where the packet calculation is being made. The other method is to place the offset at
the libgpu level. If you choose this method, the offset is added at the stage where a frame buffer not
attached to the packet is drawn. The third argument of GsInitGraph is used to choose the offset method.

If you are planning on using this in combination with libgpu functions, using the latter method, placing the
offset at the libgpu level, is recommended. Using the former method, compatibility with other than previous
versions cannot be assured.

Frame Double Buffer During Interlace

During interlace mode, a double resolution of 480 can be specified as the vertical resolution. In this case,
double-buffering is automatically executed between even number addresses and odd number addresses of
scanning lines. So, it is necessary to designate the same buffers as the GsDefDispBuff() arguments.

When vertical resolution is specified as 240 during interlace mode, it is necessary to set different buffers, as
you do in non-interlace mode.

10-12 Extended Graphics Library

Run-time Library Overview

Clipping

In libgs, clipping is divided into two-dimensional clipping and three-dimensional clipping.

Two-dimensional clipping is clipping after transforming the screen coordinate system. Three-dimensional
clipping is clipping according to the distance from the viewpoint.

Two-dimensional Clipping

The rendering chip has a function which designates any rectangle on the frame buffer as a clipping area.

The clipping area is registered in the libgs internal variable set by the GsSetClip2D() function.
GsSetDrawBuffClip() sets the internal contents of the variable and makes them effective.

Also, when switching double buffers, switch the clipping area so that an overflowing polygon does not
destroy another buffer.

Three-dimensional Clipping

In libgs, three-dimensional clipping is performed at the application level. Accordingly, library level three-
dimensional clipping is not supported for other than default values. The three-dimensional clipping default
values are as follows:

FAR CLIP When the screen coordinate system Z value is greater than 65536, the Z value can be
clipped (because the Z value is uncoded 16-bit).

NEAR CLIP When the screen coordinate system Z value is less than h/2, the Z value can be clipped (h
is projection).

Near Clipping Problem

The near clipping occurs when polygons approach the viewpoint without limitation, such as in the road
surface of a racing game, and the polygons themselves become extremely large due to their nearness to
the viewpoint. When clipped by polygon units, large holes appear in the road surface close to the
viewpoint, and this makes for extremely difficult viewing. As a solution to this problem libgs supports the
automatic division of polygons.

When an approaching object reaches the near clipping plane, near clipping can be performed smoothly by
the setting of the automatic division attribute. However since the load from automatic division is heavy,
please restrict its use to only when absolutely necessary.

Packet Preparation Function

libgs has three kinds of packet creation functions, GsSortObject3(), GsSortObject4(), and GsSortObject5().
Each of these functions is an appropriate choice under different conditions.

Packet Buffer

There are two types of packet buffer:

• Preset packet buffer

• Run-time packet buffer

The Preset packet buffer (1) is essential when using the Preset packet buffer object. The object type which
uses the preset packet is the GsSortObject5() function which uses GsDOBJ5. The size of the present
packet is fixed by the model.

Extended Graphics Library 10-13

Run-time Library Overview

Using the GsPresetObject() return value it is possible to find out how far the buffer has been preset. Initially
one preset is necessary.

Since the preset packet creates the packet in the preset buffer area, it does not use up the run-time packet
buffer.

However, when the automatic division is set to ON in the GsDOBJ5 attribute, the packet created does
consume the run-time packet buffer.

The Run-time packet buffer (2) is the buffer used when a packet is created during execution.

GsSortObject4(), GsSortSprite, etc. use this buffer.

The head of the buffer is specified by GsSetWorkBase() and when GsSortObject4() is called, the packet is
created in that area and the current packet area pointer is taken by GsGetWorkBase().

The amount of the buffer used per frame will increase or decrease depending on the number of polygons
calculated.

Preset Packets

Preset packets are packets that have been made ahead of time. If preset packets are used, it is not
necessary to rewrite every frame. Speed is improved by not having to perform tasks like writing U, V texture
values to memory.

PMD format is an exclusive preset packet modeling format;GsSortObject5() is the packet creation function
for preset package. GsSortObject() is used in creating a preset package.

PMD format incorporates both modeling data and preset packets.

The packet is a collection of structures (primitives) such as libgpu.h POLY_FT4. The primitive class can be
determined by looking at its type.

To set tpage, set the tpage of the packet structure tpage (if the packet is POLY_FT4, set the tpage of the
structure POLY_FT4).

10-14 Extended Graphics Library

Run-time Library Overview

Figure 10-3: Preset Packet Format

header 0

header 1

preset

packets

header 0

header 1

terminator

preset

packets

header0:

header1:

preset packets:

32 bits. The upper eight bits indicate the

preset packet type. The lower 24 bits are a

pointer to the next packet group.

Indicates the num ber of preset packets in

the packet group. The packet group is

com posed of packets of the sam e type.

The num ber of preset packets uses double

the num ber of packets to provide a packet

double buffer.

term inator: The address section is all zeros.

TMD Sort

TMD format modeling data allows the setting-up of random polygons. In realtime, when random polygon
types appear that create packets from TMD data and which are subsequently converted, the decode
routine is swapped out of the I cache and the processor is unable to keep up.

This is the reason for a TMD data high speed technique for ordering polygons. This technique is the TMD
sort.

The GsSortObject4() or GsSortObject5() packet-creating functions are faster if they use sorted TMD data.

TMD sort is carried out at the authoring level. TMDSORT.EXE is the conversion command. See the
explanation of authoring tools for details on using this command.

If either of the GsSortObject4() or GsSortObject5() packet creation functions use the sorted TMD data, the
speed will be enhanced.

Packet Creating Functions

GsSortObject3()

GsSortObject3() creates PMD format packets. It uses the object handler GsDOBJ3. For GsDOBJ3 to
handle PMD data, GsLinkObject3() must be called first to link the PMD data and the handler.

The PMD format is combination of the modeling data and preset packet.

The conversion of TMD to PMD takes place at the authoring level. TMD2PMD.EXE is the conversion tool.
See the explanation of authoring tools for details.

Extended Graphics Library 10-15

Run-time Library Overview

GsSortObject4()

GsSortObject4() is the most generic object calculation routine. It uses sorted TMD format data for greater
speed. The TMD data sort is carried out by the tmdsort.exe command. The object handler GsDOBJ2 is
used.

For GsDOBJ4 to handle the TMD data, GsLinkObject4() must be called first to link the TMD data and the
handler.

GsSortObject4() uses the preset local/screen matrix and the local/screen light matrix as a reference. The
object is local screen converted, sorted and allocated to the OT.

The local/screen matrix is set by GsSetLsMatrix(). Local/screen light matrix setting is performed by
GsSetLightMatrix().

The polygons allocated to OT are drawn by GsDrawOt(). This drawing function can return quickly, and
drawing may be done in the background.

GsSortObject5()

GsSortObject5() is a packet creation function that uses preset packets. It uses sorted TMD format data to
increase speed. GsSortObject5() uses the object handler GsDOBJ5. TMD data sort is carried out in the
tmdsort.exe command. For GsDOBJ5 to handle the TMD data, GsLinkObject5() must be called first to link
the TMD data and the handler.

GsSortObject5() uses GsPresetObject() to create preset packets. For GsSortObject5() to create a packet,
GsPresetObject() must be initialized once and a preset packet created.

Packet Creation Function

The functionality of each packet creation function is shown below.

Table 10-2: Packet Creation Function Comparison Chart 1

A B C D E F G H I

GsSortObject3 GsDOBJ3 X X X X X X X 250K
GsSortObject4 GsDOBJ2 X O O X X O O ?
GsSortObject5 GsDOBJ5 X O O X X X O 220K

A. OBJTYPE Object handler used

B. Material attenuation (See attribute)

C. FOG (See attribute)

D. Light source calculation off (See attribute)

E. NearZ CLIP (See attribute)

F. Back CLIP (See attribute)

G. Semi-transparency rate (See attribute)

H. Automatic division (See attribute)

I. Efficiency 10x10 (Real measurement value of a flat triangle)

GsSortObject4 is more efficient than GsSortObject3 and less efficient than GsSortObject5

Table 10-3: Packet Creation Function Comparison Chart 2

Presort Preset Preshade WorkBase Tools

GsSortObject3 OK OK OK NG Tmd2pdm
GsSortObject4 OK NG OK/NG OK rsdlink, TMDSORT
GsSortObject5 OK OK OK/NG NG(normal) rsdlink, TMDSORT

OK(autodivision)

10-16 Extended Graphics Library

Run-time Library Overview

Packet Area

GsSortObject4() creates the packet and allocates it to the ordering table.

The packet creation area is set by the GsSetWorkBase() function.

Packets increase and decrease depending on the type and number of polygons (flat/gouraud, with/without
texture). Only a rough estimate can be made of how much area should be maintained. If the area of an
actual packet is smaller than the packet created, it will destroy the area behind the packet area.

GsGetWorkBase() is a function to return the area currently available for use by a packet. A program may
use this function to estimate the danger of overflow.

It is not necessary to use GsSetWorkBase() to maintain a new packet area when using GsSortObject5(),
because the packet area for the preset packet area may be reserved.

You must define a packet area with GsSetWorkBase() when using automatic division, because a packet
that has been divided and increased in size may use the packet area set aside by GsSetWorkBase().

Packet Double Buffer

Drawing is executed in the background, so the packets in a drawing cannot be destroyed. Consequently, it
is necessary to prepare two packet areas to make a double buffer.

Drawing

Call the GsDrawOt() function to begin drawing. The drawing area is swapped each time GsSwapDispBuff()
is called. Drawing occurs in the background so sufficient time must be allowed to complete the operation.

During the drawing process images from the previous two frames that remain in the drawing area are
cleared. Call GsSortClear() to register the “screen-clear” Special Primitive to the OT before clearing the
screen. The cleared screen color may be specified as an RGB value in the arguments to the function.

Processing Flowchart

A typical flowchart of 3D processing required for each frame is shown below. See the sample program for
details.

Figure 10-4: Three-dimensional Processing Flowchart

Select the buffer to use

Clear OT

Perspective transformation/Z sort

(record command to OT)

V-blanking sync

Start OT drawing

Extended Graphics Library 10-17

Run-time Library Overview

Jump Tables

Purpose

GsSortObject5(),GsSortObject4() dispatches attributes, pre-set data, etc. and calls low-level functions.

There are 64 low-level functions, and a single application is unlikely to use all of them.

You don't need to link GsSortObject5J() and GsSortObject4J() with unnecessary low-level functions,
thereby making the code more compact.

In addition to decreasing code size, the GsSortObject…J functions allow the user to customize Libgs.
Support for non-standard actions, such as material attenuation, reflection-mapping, etc can be added to
the Libgs, by linking user defined functions in place of the library function.

These functions are compatible with GsSortObject5() and GsSortObject4(), which organize low-levell
functions as tables.

GsFCALL is the structure in which the function table is defined. The function table is organized according to
polygon type, whether or not division is performed, and the light-source calculation mode.

Usage

The relevant functions are linked by entering the pointers of the appropriate low-level functions in each of
the elements. It is possible to avoid linking by not including the pointers and not making extern
declarations.

However, if a function that does not have a pointer is called, a BUS ERROR will be generated. To avoid
this, Libgte provides dummy (dmy…) functions. With these linked, if a call is made with an unanticipated
type, the appropriate dummy function will print its name to standard out.

The abbreviated example below, shows the use of GsSortObject5() with appropriate functions in all the
elements. In this example, GsSortObject5J() functions the same as GsSortObject5(). This example is
included in the comments

In the file libgs.h.

/* extern and hook only necessary functions */

extern _GsFCALL GsFCALL5; /* GsSortObject5J Func Table */
jt_init() /* Gs SortObject5J Hook Func */
{
PACKET *GsPrstF3NL(),*GsPrstF3LFG(),*GsPrstF3L(),*GsPrstNF3();
PACKET *GsTMDdivF3NL(),*GsTMDdivF3LFG(),*GsTMDdivF3L(),*GsTMDdivNF3();
PACKET *GsPrstG3NL(),*GsPrstG3LFG(),*GsPrstG3L(),*GsPrstNG3();
PACKET *GsTMDdivG3NL(),*GsTMDdivG3LFG(),*GsTMDdivG3L(),*GsTMDdivNG3();
PACKET *GsPrstTF3NL(),*GsPrstTF3LFG(),*GsPrstTF3L(),*GsPrstTNF3();
PACKET *GsTMDdivTF3NL(),*GsTMDdivTF3LFG(),*GsTMDdivTF3L(),*GsTMDdivTNF3();
PACKET *GsPrstTG3NL(),*GsPrstTG3LFG(),*GsPrstTG3L(),*GsPrstTNG3();
PACKET *GsTMDdivTG3NL(),*GsTMDdivTG3LFG(),*GsTMDdivTG3L(),*GsTMDdivTNG3();
PACKET *GsPrstF4NL(),*GsPrstF4LFG(),*GsPrstF4L(),*GsPrstNF4();
PACKET *GsTMDdivF4NL(),*GsTMDdivF4LFG(),*GsTMDdivF4L(),*GsTMDdivNF4();
PACKET *GsPrstG4NL(),*GsPrstG4LFG(),*GsPrstG4L(),*GsPrstNG4();
PACKET *GsTMDdivG4NL(),*GsTMDdivG4LFG(),*GsTMDdivG4L(),*GsTMDdivNG4();
PACKET *GsPrstTF4NL(),*GsPrstTF4LFG(),*GsPrstTF4L(),*GsPrstTNF4();
PACKET *GsTMDdivTF4NL(),*GsTMDdivTF4LFG(),*GsTMDdivTF4L(),*GsTMDdivTNF4();
PACKET *GsPrstTG4NL(),*GsPrstTG4LFG(),*GsPrstTG4L(),*GsPrstTNG4();
PACKET *GsTMDdivTG4NL(),*GsTMDdivTG4LFG(),*GsTMDdivTG4L(),*GsTMDdivTNG4();
PACKET *GsPrstF3GNL(),*GsPrstF3GLFG(),*GsPrstF3GL();
PACKET *GsPrst3GNL(),*GsPrstF3GLFG(),*GsPrstF3GL();

10-18 Extended Graphics Library

Run-time Library Overview

/* flat triangle */
…
…
..
}

Scratch Pad Usage Volume

In the Libgs the Scratch Pad address can be passed by argument to GsSortObject4, GsSortObject4J,
GsSortObject5 and GsSortObject5J. The scratch pad, a feature of the CPU, allows “high speed access” to
as much as 1k of data. It is used in polygon division to improve speed.

Scratch Pad Consumption Status

The scratch pad consumption condition uses the following functions and attribute:

Table 10-4: State of Scratch Pad Consumption

Function name GsSortObject4()
GsSortObject4J()
GsSortObject5()
GsSortObject5J()

attribute GsDIV1, GsDIV2, GsDIV3,
GsDIV4, GsDIV5

The scratch pad area is not used when automatic division is not carried out.

Scratch Pad Consumption Volume

The scratch pad consumption volume is as follows: (unit: byte)

Table 10-5: Scratch pad usage volume

GsDIV1 GsDIV2 GsDIV3 GsDIV4 GsDIV5

Triangular Polygon 184 272 360 448 536
Rectangular Polygon 260 400 540 680 820

Method for Common Use of Scratch Pad by the User Program and Library

The scratch pad base address given by the GsSortObject...() argument is shifted lower and the higher is
used in the user program. The scratch pad area used by the library is extended down in relation to the
address.

mip-map Library

The Libgs supports mip-mapping. mip-mapping is the switching of the texture of a textured rectangular
polygon, according to the size of the polygon. Using mip-mapping it easier to hit the texture cache and the
drawing time is shortened.

Extended Graphics Library 10-19

Run-time Library Overview

Usage Method

The GsSortObject4J() lower functions which support mip-map are as follows:

Table 10-6: mip-map Lower Function Group

GsTMDfastTF4LM Flat textured quadrangle (light source
calculation)

GsTMDfastTF4LFGM Flat textured quadrangle (light source
calculation+FOG)

GsTMDfastTF4NLM Flat textured quadrangle (no light source
calculation)

GsTMDfastTNF4M Flat textured quadrangle (no light source
calculation)

GsTMDfastTG4LM Gouraud textured quadrangle (light source
calculation)

GsTMDfastTG4LFGM Gouraud textured quadrangle (light source
calculation+FOG)

GsTMDfastTG4NLM Gouraud textured quadrangle (no light source
calculation)

GsTMDfastTNG4M Gouraud textured quadrangle (no light source
calculation)

GsTMDdivTF4LM Flat textured quadrangle (fixed division+ light
source
calculation)

GsTMDdivTF4LFGM Flat textured quadrangle (fixed division+light
source
calculation+FOG)

GsTMDdivTF4NLM Flat textured quadrangle (fixed division+no
light source
calculation)

GsTMDdivTNF4M Gouraud textured quadrangle (fixed division+no
light source
calculation)

GsTMDdivTG4LM Gouraud textured quadrangle (fixed division+light
source
calculation+FOG)

GsTMDdivTG4LFGM Gouraud textured quadrangle (fixed division+light
source
calculation+FOG)

GsTMDdivTG4NLM Gouraud textured quadrangle (fixed division+no
light source
calculation)

GsTMDdivTNG4M Gouraud textured quadrangle (fixed division+no
light source
calculation)

GsA4divTF4LM Flat textured quadrangle (automatic
division+light
source
calculation)

GsA4divTF4LFGM Flat textured quadrangle (automatic
division+light source
calculation+FOG)

10-20 Extended Graphics Library

Run-time Library Overview

GsA4divTF4NLM Flat textured quadrangle (automatic
division+no light
source
calculation)

GsA4divTNF4M Flat textured quadrangle (automatic
division+no light
source
calculation)

GsA4divTG4LM Gouraud textured quadrangle (automatic
division+light source
calculation)

GsA4divTG4LFGM Gouraud textured quadrangle (automatic
division+light source
calculation+FOG)

GsA4divTNG4M Gouraud textured quadrangle (automatic
division+no light
source
calculation)

GsA4divTNG4M Gouraud textured quadrangle (automatic
division+no light
source
calculation)

Texture Location

When using mip-map please position the textures within the frame buffer the texture as follows:

Figure 10-5: Texture Location

1/1

1/4

1/16
1/64

The texture size is in four stages: 1, 1/4. 1/16 and 1/64. The texture being used can be calculated by using
the external product value. The above four textures must be within the same tpage.

Polygon Vertex

The polygon vertex order must be as follows:

Extended Graphics Library 10-21

Run-time Library Overview

Figure 10-6: Polygon Vertex Order

1

23

0

10-22 Extended Graphics Library

Run-time Library Overview

Run-Time Library Overview

Chapter 11:
CD/Streaming Library

Table of Contents

Overview 11-3
Library and Header Files 11-3

CD-ROM Library Overview 11-3

CD-ROM Sectors 11-3
Audio Sectors 11-3
Data Sectors 11-3
ADPCM Sectors 11-4
Interleave 11-4

Addressing (Location Specification) 11-4
Tracks 11-4
Absolute Sectors 11-4
File System 11-4

Transfer Rate 11-5
Sector Buffer 11-5

Sound Control 11-5

Primitive Commands (Low Level Interface) 11-6
Command Arguments (Parameters) 11-7
Command Return Value (Result) 11-8
Command Overview 11-9

Command Synchronization 11-11
Command Execution Status 11-12
Command Synchronization Callbacks 11-13
CdControlF Interface 11-14

Data Read 11-14
Retry Read and No-Retry Read 11-14
Sector Ready Synchronization 11-14
Data Ready Synchronous Callback 11-15
Sector Buffer Transfer 11-15
Sector Transfer Synchronization 11-15

High-Level Interface 11-16
Data Read 11-16
Data Read Synchronization 11-16

ADPCM 11-16
Multichannel 11-17

Position-Confirmation Utility 11-17
TOC Read 11-17
Directory Read 11-18
Report Mode 11-18

Event Services 11-18

Callback, Synchronous Function Overview 11-19

11-2 CD/Streaming Library

Run-Time Library Overview

Special CD-ROM Notes 11-19
Notes on Disc Access 11-19
The Outer Three Minutes Problem 11-21
Notes on Using Low Level Function Groups 11-21
Operations Required for Swapping CDs 11-25
Warnings Regarding Changing the Motor Speed in the CD Subsystem 11-26
Libcd Message Reference 11-27

Streaming Library Overview 11-31

Streaming 11-31

Synchronization Control 11-31

Ring Buffer 11-32

Ring Buffer Format 11-32

Memory Streaming 11-33

Interrupt Control of 24-Bit Movie Playback Time 11-34

Interrupt Functions Used 11-34

CD/Streaming Library 11-3

Run-Time Library Overview

Overview

The CD/Streaming Library (libcd) consists of two separate libraries:

• The CD-ROM Library, which provides functions for controlling the PlayStation built-in CD-ROM drive.

• The Streaming Library, which is a group of functions for continuous reading of realtime data such as
movies, sounds or vertex data stored on high-capacity media. For an overview of the Streaming library,
see the Streaming Library Overview, page 11-31.

Library and Header Files

Every program accessing CD-ROM and streaming services must link with the file libcd.lib .

Source code must include the header file libcd.h .

CD-ROM Library Overview

The following are the services that the CD-ROM library provides. An overview of each service will be given
later.

• CD-ROM control
• CD sound control
• Other

CD-ROM Sectors

Digital data is recorded on a CD-ROM in a spiral, the same as with a CD audio disk. This digital data is
controlled by a processing unit called a sector. A digital data region lasting one second is divided into 75
sectors. Each sector is classified in one of the following sector types according to what it is used for.

Table 11-1: Sector Types

Sector type Stored data

Audio sector CD-DA audio data
ADPCM sector ADPCM compressed audio sector
Data sector User data sector

Audio Sectors

An audio sector records fs = 44.1 kHz digital stereo audio data (ordinary CD audio data). An audio sector
may be played by the CdlPlay command and cannot be read as user data.

Data Sectors

User data is recorded on a data sector. A data sector's effective user area varies somewhat according to
mode, but the standard is to use 2048 bytes (mode-1 format).

11-4 CD/Streaming Library

Run-Time Library Overview

ADPCM Sectors

Strictly speaking, this indicates a sector called a realtime sector or mode-2 form-2 sector. ADPCM
compressed audio data is stored here, and can be played as audio in the same way as an audio sector.

Interleave

On an ADPCM sector, ordinary audio data is recorded after being compressed by 1/4, relative to data on
an audio sector. ADPCM sectors need to be arranged on a disk every four sectors in order that the CD-
ROM may play ADPCM without having to seek each sector. This is known as interleaving. Interleaving
ADPCM sectors makes it possible to record other data on the remaining sectors, and makes it possible to
play audio while reading data.

When the disk is played at twice normal speed (double speed) the interleave separation must be every 8
sectors.

Addressing (Location Specification)

CD-ROM addressing (position setting) is done using track number, index number, minute, second, and
sector for compatibility with CD audio. That is, the position of CD-ROM data can be established as a track
number and index number when seen as audio data, or as a point which is x minutes x seconds x sectors
from the header of the disk.

There are 75 sectors in one second and 60 seconds in one minute. The starting sector begins at 00
minutes 02 seconds 00 sector.

Tracks

On a disk, a track signal is recorded at the header of each track, and a position table for track signals is
recorded at the header of the disk as the TOC (Table of Contents). The location for starting to play an audio
sector is detected using the TOC and track signals.

Absolute Sectors

A data sector is addressed by minute/second/sector, but to make position calculation easy, there is also a
method which sets it by counting the total number of sectors from the header (00 minutes 02 seconds 00
sector). This is called absolute sector setting. The absolute sector can easily be calculated from
minute/second/sector by using the CdIntToPos() and CdPosToInt() functions.

File System

This is a method for getting the absolute value of a disk through the 9660 file system, besides specifying
through low-level addressing. This method can only be used when the disk is recorded using the ISO-9660
file system format.

A CD-ROM is read-only, so the files on a disk can be arranged so that they all have continuous sector
regions. Therefore a file can be read simply by specifying that file's start location, and something equivalent
to an ordinary FAT(File Allocation Table) is not necessary. In the library, the function CdSearchFile(), which
searches for a file's starting location, is used as an index of file names.

CD/Streaming Library 11-5

Run-Time Library Overview

Transfer Rate

A CD-ROM can rotate the disk at either normal speed or double speed. Normal speed has the same RPMs
as an ordinary CD player, and double speed is twice as fast. The faster the disk rotation the faster the disk
transfer speed.

CD-ROM transfer modes correspond to normal speed and double speed, and are 150KB/sec and
300KB/sec respectively. This means that in one second 75 sectors of data are read at normal speed and
150 sectors of data are read at double speed.

Sector Buffer

A CD-ROM's transfer speed is very slow compared to the host system's bus speed (132MB/sec), so the
CD-ROM system has an internal local memory for one sector of data, called the sector buffer, and data
from the CD-ROM is temporarily stored in the sector buffer before being collected and transferred. Data
transfer from the CD-ROM follows the procedure shown below.

Figure 11-1: Process of CD-ROM Transfer

CD-ROM

Sector buffer

Main memory

Each device name

CdlReadN()

CdGetSector()

However, this is an examplle of a low-level interface. A high-level interface, such as CdRead() that can read
data more easily is also provided.

Sound Control

The CD-ROM subsystem outputs two channels of audio signal: right (R) and left (L). Both CD audio and
ADPCM audio are handled this way. Audio signals are sent to the SPU, then added to and synthesized with
signals from an audio source inside the SPU and finally output as the composite sound. Four attenuators
control the CD-ROM's audio output. Attenuator control is set through the CdMix() function using the
CdlATV structure.

cd (L) --> ATV0 --> SPU (L)
cd (L) --> ATV1 --> SPU (R)
cd (R) --> ATV2 --> SPU (R)
cd (R) --> ATV3 --> SPU (L)

11-6 CD/Streaming Library

Run-Time Library Overview

Primitive Commands (Low Level Interface)

The lowest level of operation for the CD-ROM is done by issuing direct commands to the CD-ROM
subsystem.

The CdControl() function is used to issue each command and takes the following arguments.

CdControl(
u_char com, /* command code */
u_char *param, /* command argument set address */
u_char *result) /* command return value storage address */

For example, when playing a CD from 1 minute 00 seconds using CdControl(), a CdlPlay primitive
command (code 0x03)is issued as follows:

#include <libcd.h>

CdlLOC pos;
u_char result[8];

pos.minute = 0x01; /* 1 min */
pos.second = 0x00; /* 0 sec */
pos.sector = 0x00; /* 0 sector (void) */
pos.track = 0x00; /* void */

CdControl(CdlPlay, &pos, result);

The details of param and result and the respective bit assignments are different for each command.
Low level commands defined by CdControl() functions are called primitives. Primitive commands and their
corresponding command codes are assigned as folllows:

Table 11-2: Primitive Commands and Corresponding Codes

Symbol Code Type Details

CdlNop 0x01 B NOP (No Operation)
CdlSetloc 0x02 B Set seek packet location
CdlPlay 0x03 B CD-DA start play
CdlForward 0x04 B Fast forward
CdlBackword 0x05 B Rewind
CdlReadN 0x06 B Data read start(with retry)
CdlStanby 0x07 N Wait with disk rotating
CdlStop 0x08 N Stop disk rotation
CdlPause 0x09 N Temporarily stop at current location
CdlMute 0x0b B CD-DA mute
CdlDemute 0x0c B Release mute
CdlSetfilter 0x0d B Select play ADPCM sector
CdlSetmode 0x0e B Set basic mode
CdlGetlocL 0x10 B Get logical location(data sector)
CdlGetlocP 0x11 B Get physical location(audio sector)
CdlGetparam 0x0f B Get CD subsystem current mode
CdlSeekL 0x15 N Logical seek(data sector seek)
CdlSeekP 0x16 N Physical seek(audio sector seek)
CdlReadS 0x1b B Start data read(no retry)

B: Blocking; N: Non-Blocking operation

CD/Streaming Library 11-7

Run-Time Library Overview

There are two types of primitive commands: blocking, which waits for processing to complete before
return, and non-blocking, which returns without waiting for completion. When the commands are not
queued , the next command is not issued, and after confirming that the previously issued command is
complete, issuance will be blocked.

Command Arguments (Parameters)

A primitive command needs a list of arguments called parameters, as shown below. Command arguments
are as follows:

Table 11-3: Primitive Command Arguments

Symbol Parameter Type Details

CdlSetloc CdlLOC * Start sector location
CdlReadN CdlLOC * Start sector location
CdlReadS CdlLOC * Start sector location
CdlPlay CdlLOC * Start sector location
CdlSetfilter CdlFILTER * Set play ADPCM sector
CdlSetmode u_char * Set basic mode
CdlGetTD u_char * Track no (BCD)

Commands other than these do not need arguments. NULL (0) is set in the argument pointer in commands
that don't need arguments.

CdlLOC specifies the disk location, and has the following structure.

struct {
u_char minute; /* sector location(min)*/
u_char second; /* sector location(sec)*/
u_char sector; /* sector location(sector)*/
u_char track; /* reserved */
} CDlLOC;

Minute/second/sector are given in BCD format. In BCD, each digit of a decimal number is assigned a 4-bit
field. For example, decimal 60 is specified by a hexadecimal 0x60 notation.

The CdlFILTER structure is used to specify the multi-channel ADPCM play channel, and has the following
structure.

struct {
u_char file; /* play file ID */
u_char chan; /* play channel ID */
unsigned short pad;
} CdlFILTER;

11-8 CD/Streaming Library

Run-Time Library Overview

Command Return Value (Result)

After a primitive command is executed, an 8-byte value is always returned. The meaning of the return value
varies according to the command, as shown below.

Table 11-4: Primitive Command Return Values

Symbol Return Value and Stored Byte Position
0 1 2 3 4 5 6 7

CdlNop Status
CdlSetloc Status
CdlPlay Status
CdlForward Status
CdlBackword Status
CdlReadN Status
CdlStanby Status
CdlStop Status
CdlPause Status
CdlMute Status
CdlDemute Status
CdlSetfilter Status
CdlSetmode Status
CdlGetparam Status Mode
CdlGetlocL Min Sec Sector Mode File Chan
CdlGetlocP Track Index Min Sec Frame Amin Asec Aframe
CdlSeekL Status Btrack Etrack
CdlSeekP Status Min Sec
CdlReadS Status

The buffer region that stores the return value needs 8 bytes even when the command's return value
status is only one byte.

Also, setting a the result parameter to NULL (0) suppresses the return value. In the following example, the
function returns without setting CdlSeekL's return value.

CdlLOC pos;
CdControl(CdlSeekL, &pos, 0);

Status Bit Assignments

The first byte of the result of almost all commands indicates CD-ROM status. The bit assignments of the
status byte are as shown below. Use the command CdlNop if you wish to obtain the CD-ROM status only.

Table 11-5: Bit Assignments of Status Byte

Symbol Code Details

CdlStatPlay 0x80 1: CD-DA playing
CdlStatSeek 0x40 1: seeking
CdlStatRead 0x20 1: reading data sector
CdlStatShellOpen 0x10 1: shell open*
CdlStatSeekError 0x04 1: error during seeking/reading
CdlStatStandby 0x02 1: motor rotating
CdlStatError 0x01 1: command issue error

*This flag is cleared by the CdlNOP command.Therefore, in order
to decide if the cover is currently open or not and before checking
this flag, the CdlNOP command must be issued at least once.

CD/Streaming Library 11-9

Run-Time Library Overview

Command Overview

This section gives a brief description of each command and explains the command.

CdlNop

Does nothing. Used for obtaining status.

CdlSetloc

Sets target position. This only sets the position; the actual operation is not performed. The target position
set by this function is used prior to executing CdlPlay, CdlReadN, CdlReadS, CdlSeekP, or CdlSeekL.

CdlPlay

After the CD-ROM head seeks the target position, CD-DA play begins. Target position is set by argument.
If the argument is set as NULL, the value set by the immediately preceeding CdlSetloc or CdlSeekP is
used.

CdlReadS/CdlReadN

After the CD-ROM head seeks the target position, the data sector contents are read and transferred to the
local buffer. Target position is set by argument. If the argument is set as NULL, the value set by the
immediately preceeding CdlSetloc or CdlSeekL is used.

CdlReadS does not retry if an error occurs. This is used mainly for realtime reading such as streaming play,
etc. CdlReadN can retry (max. 8 seconds) if a read error occurs. However, there is still the possibility of
failure even with the retry.

CdlSeekL/CdlSeekP

After the CD-ROM head seeks the target position, it waits in pause status. Unlike a hard disk, a CD-ROM
has a long seek time, so if the target address is known in advance, access can be sped up by moving the
head to the target position in advance.

CdlSeekL does a logical seek of the data sector. The sector address has been recorded in the header of
the data sector, so it is possible to perform an accurate seek. This operation is called a logical seek. A
logical seek is only effective on a data sector.

On the other hand, a seek which uses a subcode (physical seek) is performed on an audio sector which
does not have a sector header. A physical seek is imprecise but is effective on every type of sector.

The relationship between the two types of seek is shown in the table below.

Table 11-6: The Operation of CdlSeek/CdlSeekP

Command Seek Method precision Sector used on

CdlSeekL Logical High Anything but audio sectors
CdlSeekP Physical Low All sectors

CdlForward/CdlBackword

Starts fast forwarding or rewinding an audio sector during play.

CdlStandby/CdlStop/CdlPause

CdlStandby waits with the spindle motor rotating.

CdlStop halts the spindle motor and returns the head to the home position. The next transition to seek or
read or play can be done faster in standby status than in stop status.

CdlPause temporarily halts read or play, and waits at the head's position in standby status.

11-10 CD/Streaming Library

Run-Time Library Overview

CdlMute/CdlDemute

This mutes (no sound) or releases the mute in CD-DA or ADPCM play.

CdlSetfilter

Sets play channel in multichannel ADPCM play. The channels which can be played are indexed by file
number and channel number. The default file number and channel number is (1,1).

CdlSetMode

Sets the CD-ROM's basic operation mode.

Mode setting is done by taking the logical OR of the following bits and setting the result byte using the
CdlSetMode command. The current mode can be obtained using the CdlGetlocL command.

Table 11-7: Mode Settings of CdlSetMode

Symbol Code Details

CdlModeSpeed 0x80 Transfer speed 0: Normal speed 1: Double speed
CdlModeRT 0x40 ADPCM play 0: ADPCM OFF 1: ADPCM ON
CdlModeSize1 0x20 Sector size 0: 2048 byte 1: 2340byte
CdlModeSize0 0x10 Sector size 0: — 1: 2328byte
CdlModeSF 0x08 Subheader filter 0: Off 1: On
CdlModeRept 0x04 Report mode 0: Off 1: On
CdlModeAP 0x02 Autopause 0: Off 1: On
CdlModeDA 0x01 CD-DA play 0: CD-DA off 1: CD-DA on

CdlGetparam

Gets the CD subsystem current mode.

CdlGetlocL

Gets current position of the data sector being read or the ADPCM being played. The table below shows the
meaning of the result code. CdlGetlocL does not work when an audio sector is playing.

Table 11-8: CdlGetlocL Parameters

Result byte no. Details

0 Minute (BCD)
1 Second (BCD)
2 Sector (BCD)
3 Status
4 File number (see CdlSetFilter command)
5 Channel number (see CdlSetFilter command)

CD/Streaming Library 11-11

Run-Time Library Overview

CdlGetLocP

Gets the physical address of the sector being read or played. The table below shows the obtainable
parameters . CdlGetlocP gets the subcode address, so it is effective on all sector types, including audio
sectors.

Table 11-9: CdlGetLocP

Result byte no. Details

0 Track number (BCD)
1 Index number (BCD)
2 Track relative minute (BCD)
3 Track relative second (BCD)
4 Track relative sector (BCD)
5 Absolute minute (BCD)
6 Absolute second (BCD)
7 Absolute sector (BCD)

Track relative minute/second/sector indicates an offset value from that track's header location. Absolute
minute/second/sector specifies the location from the initial track.

CdlGetTN

Obtains number of TOC entries.

Table 11-10: CdlGetTN

Result Contents

0 Status
1 Initial track No. (BCD)
2 Final track No. (BCD)

CdlGetTD

Obtains the TOC entries information (min, sec) corresponding to the track number specified in the
parameters Please set the track No. in the BCD parameters.

Table 11-11: CdlGetTD

Result Contents

0 Status
1 TOC min
2 TOC sec

However, when the track No. is set at 0

min: total performance time (minutes)
sec: total performance time (seconds)

Command Synchronization

Primitive commands which take some time to process return without waiting for the actual completion of
processing. These commands are called non-blocking commands (asynchronous commands).

On the other hand, those which wait for the completion of processing before returning are called blocking
commands (synchronous commands).

Non-blocking commands continue processing in the background even after a CdControl() function returns.
During this time the host system can continue processing in parallel.

11-12 CD/Streaming Library

Run-Time Library Overview

The actual completion of non-blocking command processing uses the CdSync() function or the callback
function which will be described later.

The return value (result) of the function CdControl when a non-blocking command is actually issued is
temporary, so it must be determined by the return value of the last status, the function CdSync, or by an
argument passed by the argument of a callback function.

The following example shows a function which blocks all commands until completion.

CdControlB(u_char com, u_char *param, u_char *result) {
/* command issue */
if (CdControl(com, param, result) == 0)

return(0);
/* blocks until command completion */
if (CdSync(0, result) == CdlComplete)

return(1);
else

return(0);
}

Command Execution Status

Primitive commands have the following processing status.

Table 11-12: Primitive Command Processing Status

Processing Status Details

CdlNoIntr Command being executed
CdlComplete Execution complete, waiting
CdlDiskError Error occurred

When a command is issued, the execution status changes from CdlComplete to CdlNoIntr. When a
command ends normally and the next command can be received, the status shifts to CdlComplete. If an
error is detected during execution, the status becomes CdlDiskError.

Blocking commands and non-blocking commands can be defined based on the processing status when
the function returns.

A blocking command waits for CdlComplete/CdlDiskError status after a command is issued and then
returns, but a non-blocking command returns CdlNoIntr as-is.

Getting Command Execution Status

The execution status of non-blocking commands are obtained from the return value of the function
CdSync(). The format of CdSync() is as follows:

CdSync(
u_char mode, /* mode 0: blocking; 1:non-blocking */
u_char *result) /* command's return value storage address */

It is possible to set blocking and non-blocking commands with CdSync() according to mode arguments.
Accordingly, 1 and 2 below give the same result.

Table 11-13: CdSync() Mode ArgumentValues and Contents

Mode Details

0 Do not return until execution status shifts to something other than
CdlNoIntr

1 Return immediately regardless of the execution status

CD/Streaming Library 11-13

Run-Time Library Overview

Example A:
CdControl(CdlSeekL, (u_char *)pos, 0);
CdSync(0, result);

Example B:
CdControl(CdlSeekL, (u_char *)pos, 0);
while (CdSync(1, result) != CdlNoIntr);

Furthermore, at the point when the execution status of the CdSync() return value (recall) is
CdlComplete/CdlDiskError, it is fixed for the first time.

If the processing status is CdlNoIntr, the next command cannot be received. Command execution is not
queued, so a new command waits until the previous command completes and the execution status
becomes CdlNoIntr. Therefore the following codes produce the same result.

Example A:
CdControl(CdlSeekP, (u_char *)pos, 0);
CdControl(CdlPlay, 0, result);

Example B:
CdControl(CdlSeekP, (u_char *)pos, 0);
CdSync(0, 0);
CdControl(CdlPlay, 0, result);

In both examples a and b, the processing is blocked while seeking. This can be avoided by setting the
direct location and issuing CdlPlay or by starting CdlPlay within a callback function.

 /* Blocked During Seek */
CdControl(CdlSeekP, (u_char *)pos, 0);
CdControl(CdlPlay, 0, result);

/* Not Blocked During Seek */
CdControl(CdlPlay, (u_char *)pos, result);

Command Synchronization Callbacks

A callback function is a function that may be called when the command execution status shifts from
CdlNoIntr to CdlComplete/CdlDiskError. Callback registration uses the CdSyncCallback() function. The
following types of arguments are transferred in the callback function.

void callback(
u_char intr, /* execution status at that point in time */
u_char *result) /* newest return value at that point in time */

An example of using a callback is provided below.

Example: Execute CdlPlay if CdlSeek terminates
main() {

void callback();
CdlLOC pos;
....

/* register callback function callback() */
CdSyncCallback(callback);
....

/* issue command */
CdControl(CdlSeekP, (u_char *)&pos, 0);

}

/* the following function is called when the command ends */
void callback(u_char intr, u_char *result) {

if (intr == CdlComplete)
CdControl(CdlPlay, 0, 0);

}

11-14 CD/Streaming Library

Run-Time Library Overview

CdControlF Interface

CdControl() is blocked until a report that the command has been issued is sent to the subsystem. Since
this blocked time is short when compared with the command execution time, it can usually be ignored.
However, depending on the application, it is possible that you may want to run the program without having
this time blocked. CdControlF() does not wait for command notification, it returns immediately after the
command has been issued. For this reason, it cannot be easily determined if the command has been
received or not. CdSync() must be issued and error processing must be done in polling.

Data Read

A CD-ROM is very slow compared to the transfer speed of the main bus. This is true even in double speed
mode when data the transfer rate is 300KB/sec. Consequently, the CD-ROM has an internal sector data
buffer, which merges and buffers the data from each sector.

When a data sector read command (CdlReadN/CdlReadS) is issued, the CD-ROM subsystem reads the
sector data and temporarily places the data in the sector buffer. The contents of the data in the sector
buffer are valid until overwritten by the next sector's data. Once data is valid in the sector buffer, it can be
transferred to main memory at high speed using the CdGetSector() function.

Retry Read and No-Retry Read

There are two types of data reading. One type retries at the sector unit if an error occurs during reading
(CdlReadN), and one type merely reports the error and does not retry (CdlReadS).

Reading data using CdlReadN ensures that the read data is correct, because it retries when an error
occurs. Retrying means that the sector is read again, so this operation cannot be used at the same time
when playing ADPCM. Nor is it appropriate when you want to maintain a fixed transfer rate for data quality,
as in streaming. In this case, CdReadS is used; it does not retry, even if errors occur.

Table 11-14: Retry Read/No-Retry Read

Read command Retry Error Detection

CdlReadN Yes Yes
CdlReadS No Yes

Sector Ready Synchronization

The CdReady() function detects whether or not data is ready in the sector buffer. CdReady() function format
is as follows:

CdReady(
u_char mode, /* Mode 0: blocking; 1:non-blocking */
u_char *result) /* Most recent command return value */

The CdReady() function returns the following sector buffer status.

Table 11-15: Sector Buffer Status

Processing Status Details

CdlNoIntr Being prepared
CdlDataReady Data preparation complete
CdlDiskError Error occurred

When data in the sector buffer is valid, the status shifts from CdlNoIntr to CdlDataReady/CdlDiskError. If 0
is set in the CdReady() mode argument, processing is blocked until the status shifts from CdlNoIntr. Also,
when the CdReady() function returns CdDataReady/CdDiskError, the status returns to CdNoIntr.

CD/Streaming Library 11-15

Run-Time Library Overview

Note that the CdReady() function reports the sector buffer status, so please be aware that it uses a lower-
level interface than the CdReadSync() function. CdReadSync() reports completion of CdRead(), and is
described later.

Data Ready Synchronous Callback

As with CdSyncCallback(), you may register a call back function when the sector buffer status shifts from
CdlNoIntr to CdlDataReady/CdlDiskError. Callback registration uses the CdReadyCallback() function.

The callback function registered with CdReadyCallback() starts when 1 sector of data is ready. Please note
that the specifications for this differ from CdReadCallback(). CdReadCallback() is described later.

Sector Buffer Transfer

A sector buffer is constantly overwritten with new sector data. Therefore sector data needs to be
transferred to main memory before being overwritten. The CdGetSector() function is used to transfer sector
buffer data to main memory. In the case when sector buffer data is transferred to a direct frame buffer or
sound buffer, it is transferred to main memory once before it is re-transferred to each device.

The size of the sector buffer is 1 sector. Sector size varies according to CD-ROM mode, but 2KB is usually
used. In this case, the upper limit of the size of data size which can be transferred to main memory by one
CdGetSector() function is 2KB. Data can be transferred to different locations a number of times, but in
these cases, the total size of the transferred data must equal the sector size as well.

An example of reading n sectors of data from a CD-ROM follows. This example performs the transfer in the
foreground, but it is possible to do the transfer in the background using CdReadyCallback().

cd_read(
CdlLOC *loc, /* target position */
unsigned long *buf, /* read buffer */
int nsec) /* number of sectors */

{
u_char param[4];
/* set double speed mode */
param[0] = CdlModeSpeed;
CdControl(CdlSetmode, param, 0);
/* issue retry command */
CdControl(CdlReadN, (u_char *)loc, 0);
/* transfer to main memory as soon data is ready */
while (nsec--) {

if (CdReady(0, 0) != CdlDataReady)
return(-1);

CdGetSector(buf, 2048/4);
buf += 2048/4;

}
}

Sector Transfer Synchronization

Data transfer from sector buffer to main memory is done in CdGetSector.

Since CdGetSector is a blocking function, the transfer of data is complete when it returns from the function.
Therefore, there is no need to monitor the completion of the data transfer asynchronously.

11-16 CD/Streaming Library

Run-Time Library Overview

High-Level Interface

Data Read

Data on a CD-ROM can be read by combining the CdlReadN primitive command and the CdGetSector()
function, but the library also has the function CdRead(), which combines these and expands multiple
sectors in main memory.

CdRead(
int sectors, /* number of sectors read */
u_long *buf, /* main memory address */
u_char mode) /* read mode */

CdRead() uses CdReadyCallback() internally. So this callback cannot be used when using the CdRead()
function.

Data Read Synchronization

The CdRead() function works as a non-blocking function. The actual completion of CdRead() uses the
CdReadSync() function. When the CdReadSync() function operates in non-blocking mode, it returns the
number of unread sectors remaining.

The following example is a block-type CD-ROM read function.

int CdReadB(
CdlLOC *loc, /* target position */
u_long *buf, /* memory address */
int nsector) /* number of sectors read */

{
int cnt;
u_char param[4];
/* set double speed mode */
param[0] = CdlModeSpeed;
CdControl(CdlSetmode, param, 0);
/* set target position */
CdControl(CdlSetloc, (u_char *)&loc, 0);
/* start read */
CdRead(nsector, buf, mode);
/* monitor number of sectors remaining until read ends */
while ((cnt = CdReadSync(1, 0)) > 0);

return(cnt);
}

ADPCM

ADPCM (Adaptive Differential PCM)compresses audio data encoded as 16-bit straight PCM by 1/4. A
sector storing ADPCM data is called an ADPCM sector. In order to play an audio series, ADPCM sectors
are recorded on the disk at every fourth sector for normal speed playing and at every eighth sector for
double speed playing. (This kind of processing is called interleave)

CD/Streaming Library 11-17

Run-Time Library Overview

Double speed ADPCM sector interleave is as shown below.

Figure 11-2: ADPCM Sector Interleave

0 1 2 3 4 5 6 7 8 9 a b c d e f . .

A D D D D D D D A D D D D D D D . .

A: ADPCM sector
D: Data sector

Interleaving makes it possible to read data while playing ADPCM.

Multichannel

ADPCM sectors for another ADPCM channel can be interleaved with ADPCM data sectors. The figure
below shows an example of an array.

Figure 11-3: Example Multichannel Interleave

0 1 2 3 4 5 6 7 8 9 a b c d e f . .

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

. .

An: n channel ADPCM data

This example shows 8 channels of ADPCM sectors (A0-A7) interleaved and recorded on a disk. In this
case, it is possible to switch between 8 channels of audio play without having to seek on the disk.

When playing this sort of multi-channel ADPCM tracks, the CdlSetFilter command is used to decide which
channel to play. ADPCM tracks are confirmed by the CdlFILTER structure file members and channel
members.

In order to make the CdSetFilter command effective, CdlModeSF must be set by the mode setting
command.

Position-Confirmation Utility

Direct addressing of a CD-ROM is done by setting the minute, second, and sector in the CdlLOC structure
and issuing the corresponding primitive command. The absolute position of each track and file on the CD-
ROM was determined in advance before the disk was created, so basically it isn't necessary to dynamically
search for a track or file's header position within the application.

However, for program development and debugging, a libcd utility is provided to dynamically search for the
target track or files header position when executing.

TOC Read

As a CD player function, a CD-ROM is given a track index at the head of audio sectors and data sectors
when the disk is created. The track index is recorded in the disk's TOC region, and is obtained using the
CdGetToc() function.

TOC addressing is required basically to confirm an audio track play location. Therefore it has only second
resolution and is not precise.

11-18 CD/Streaming Library

Run-Time Library Overview

Directory Read

If a disk is recorded in the ISO-9660 file system format, the disk's absolute value can be obtained using the
ISO-9660 format. Addressing using the ISO-9660 format provides more accurate locations than TOC
addressing, but the ISO-9660 file system needs to be installed and cannot be used in audio sectors.

The CdSearchFile() function is used in searching for file header locations using the ISO-9660 format.
CdSearchFile() searches for the file header location using the file's absolute path. The search result is
stored in the structure CdlFILE.

An example of reading a 9660 file from a disk is shown below.

CdlFILE fp;

CdSearchFile(&fp0, "\\PSX\\SAMPLE\\RCUBE.TIM) == 0)
CdControl(CdlSetloc, (u_char *)&fp.pos, 0);
CdRead((fp.size+2047)/2048, sectbuf, CdlModeSpee);

CdSearchFile () returns the following CdlFILE structure members.

typedef struct {
CdlLOC pos; /* file position */
u_long size; /* file size */
char name[16]; /* file name(body) */

} CdlFILE;

Report Mode

This function periodically reports the play position when an audio sector is being played. This is called
report mode. If the CdlModeRept bit is set in this mode, the status shifts to CdDataReady status 10 times
during each second of CD audio play, and the report result is returned as the return value (result). The
following information is stored in the return value.

Table 11-16: Information Obtained in Report Mode

0 1 2 3 4 5 6 7

Status Track Index Amin Asec Aframe LevelH LevelL

Obtaining a report is done by reporting with the CdReady() function or by using CdReadyCallback() in the
background.

Event Services

At initialization, a default callback function is registered for each callback. These distribute the events shown
below.

Table 11-17: Event Services

Cause Descriptor details Event type

HwCdRom Processing complete EvSpCOMP
HwCdRom Data ready EvSpDR
HwCdRom Data end EvSpDE
HwCdRom Error occurred EvSpERROR

Therefore command completion or data read completion can be detected via the event handler. However,
at the moment that a new callback is set, the default callback is released, and event transmission halts.
Restoring the released default callback is left to the application. Here is an example:

CD/Streaming Library 11-19

Run-Time Library Overview

Example: Callback Setting and Restoration
void (*old_callback)();

:
/* recover previous callback pointer when setting callback */
old_callback = CdSyncCallback(local_callback);

:
/* restore callback */
CdSyncCallback(old_callback);

Callback, Synchronous Function Overview

Table 11-18: Callback, Synchronous Functions

Called function Sync detect Callback Details

CdControl CdSync CdSyncCallback Issue command
——— CdReady CdReadyCallback Sector read
CdRead CdReadSync CdReadCallback Multiple sector read

Special CD-ROM Notes

Notes on Disc Access

A CD-ROM has to meet the CD-ROM XA specifications for playback to occur. Specifically, the CD-ROM's
data tracks must be positioned before the DA tracks. (The DA tracks are optional.) For example, it would
be incorrect if CD track 1 were a data track, tracks 2 and 3 were CD-DA tracks, and track 4 were a data
track. The tracks should be arranged so that tracks 1 and 4 are located together at the beginning as
track 1, then track 2 and the following tracks should be used for CD-DA data.

The auto pause function may not work properly if a disc has no gap between tracks or if the gaps are very
short. In this case, the disc may continue playing to the end. In order to prevent this from happening, the
gap between tracks must be at least two seconds long. As an example, to repeat one track as background
music for a game, there must either be a gap of two seconds or more with auto pause on, or the current
position must be continuously polled so that when the end of the track is reached, the track will be
replayed from the beginning.

If there is a track jump within three minutes from the outer edge of the disc, it is possible for the head to fly
off the disc. In order to prevent this from happening, the tracks within three minutes from the outer edge
should not be accessed. Generally speaking, the outer three minutes of the disc should be burned with
NULLs. However, NULLs do not have to be recorded as long as the outer three minutes of the disc are not
accessed. For example, an ending movie of three minutes or more could be recorded in place of NULLs.
As long as the ending movie is always played from the beginning, there will not be any access to the outer
three minutes. The mute off function will not work when a CD-DA track is played back immediately after a
data track. If this type of operation is desired, a mute off should be performed when the CD-DA track is
reached.

If report mode is left on during a data read, the pick-up position interrupt and the interrupt for starting data
transfers will be indistinguishable. Report mode should be turned on only when a CD-DA track is being
played. The following rules apply to the playing time sent when report mode is on. The absolute time from
the start of the disc and the relative time indicating the time elapsed within the track are sent one after the
other. In order to indicate whether the transmitted data is for absolute time or relative time, a '1' is set in the
highest bit of sector data. In report mode, the timing for sending reports is as follows.

The data read during ff, fr is limited, so everything that has been checked is sent. If the tens' column for the
absolute time is an even number, the absolute time is sent. If the tens' column for the absolute time is an

11-20 CD/Streaming Library

Run-Time Library Overview

odd number, the relative time is sent. In this case the highest bit of the frame byte is set to '1'. Since
frames only run from 0 to 74, this bit can be set without any difficulty. Generally speaking, position data can
be read during normal playback. However, this data is also sent when the tens' column changes. The
relationship between the absolute time and the relative time is as described above. Levels are also sent,
which make up 15 bits out of the two bytes of data. The remaining one bit is used to indicate the L/R
channel.

The audio output may be different between cases when the CD-DA is accessed continuously and when
TOC data is retrieved and the data is accessed in absolute time. This is due to the fact that there is an
allowance for a lag between the data written in the TOC and the actual position. When data is accessed
continuously, the access destination is automatically calculated to the header where the index is 1. Thus,
the gap isn't played back.

The reset command performs the operations described below when the mode is set from the host and the
CD is paused at the beginning. The reset command can be used as often as necessary, but after a reset is
issued, the speed will be set to the standard setting.

Thus, if data were read at double speed, the disc speed would take some time to become stable since
there would be repeated transitions between standard and double speed settings. This can be avoided by
setting the desired mode (either by overwriting the mode or by looking at the current mode and correcting
it). This will allow faster data reads, as it will eliminate the time spent waiting for the disc to reach a stable
speed.

• Mode after resetting
• Drive is in standard speed setting
• Real time
• AD-PCM: off
• Number of bytes in data transfer: 2340
• Subhead filter: off
• Report mode: off
• Auto-pause: off
• CD-DA playback in CD-ROM mode: disable
• Clear position set by setloc command.
• Clear previous error status.

An error will be returned after a prescribed time if the disc is in bad condition and cannot be accessed.
Please note that there is a tendency to forget about error handling for this event since this problem
generally does not occur.

The following types of problems may also occur. It is possible for a user to be waiting for multiple sector
reads when the data happens to be difficult to read. In this case, some data would be read and an error
would occur. Then some more data would be read and another error would occur. Because of the large
number of retries, the time spent reading data would be much longer than expected and it would appear as
though the system were hung up.

Generally, FF and FR commands cannot be performed when data is being read. If these commands are
used in an environnent such as a movie, some sort of workaround is needed for the user interface.

The "setloc, seekL, read" sequence can be used to read data, but it is also possible to use "setloc, read"
as well.

If the following commands come after a setloc, the location data that had been saved will be overwritten.

play(playN),readN,readS,seekL,seekP,ff,fr,stop,reset,allreset

Also, the operation will be cancelled when the cover is opened. The following cannot be used: performing a
double read by specifying a position (with setloc), reading (readN or readS), then issuing another readN or
readS again. In this case, the operation of specifying a position (with setloc) and then reading (readN or
readS) must be repeated twice.

CD/Streaming Library 11-21

Run-Time Library Overview

The CD-ROM decoder is equipped with 32Kbytes of local memory, but the user cannot use all areas of this
memory. Since the control software for the decoder does not support read-ahead in local memory, a data
read should start within 6.6 msec for double speed and 13.3 msec for standard speed after a data ready
interrupt. Otherwise, the data sent to the host may be updated and some data might be skipped. Ideally
two FIFO blocks should be used, with each block having a length of 2340 bytes. When one block is filled, a
switch will be made to the other FIFO.

There is some variation in access time even when the same interval is measured, and there is some
variation among individual machines. This should be taken into consideration so that read-ahead is
performed to absorb the variations.

If, while playing background music, multiple accesses need to be performed and switching time is required,
it may be efficient to use CD-ROM XA's multi-channel AD-PCM. Quick switching is not possible for CD-DA
since access is needed. Depending on the settings, it would also be possible to read data while playing
music.

The Outer Three Minutes Problem

In the current CD-ROM subsystem, seeking within three minutes of the outer edge of the CD-ROM may not
produce the correct results depending on the starting position of the seek. The problem may be prevented
in the following manner.

• Record dummy data on the outer three minutes (the last three minutes of data). Do not use the dummy
data.

• When using CD-DA for background music, make sure that the last track is three minutes or longer.
Then there would be no seeks to the outer three minutes as long as the track is not played from the
middle and the track is not repeated midway. This will allow the CD-ROM subsystem to operate
properly.

• If the outer three minutes have to be used as a data area, access the outer three minutes or more as a
single continuous file (e.g. use the area for an opening or ending movie).

Notes on Using Low Level Function Groups

Error handling and callbacks are needed when performing read accesses on a CD-ROM using a
combination of the low-level functions for CdControl(). In these cases, please take note of the following
points:

Skipped Sectors

In double-speed mode, data is read from a CD-ROM at 300 sectors/sec. Therefore, one sector will be
skipped if the host system does not finish processing the read operation for the previous sector within
1/300 sec. This problem tends to occur especially when callbacks are used as they take a long time to
process. Therefore, for places where sector skipping is a possibility, CdlModeSize1 should be called from
the application to read the sector header so that continuity of the sectors can be confirmed. The
CdlSetmode command should also be used beforehand to set CdlModeSize1 (the mode for reading the
sector header).

param[0] = CdlModeSpeed|CdlModeSize1;
CdControlB(CdlSetmode, param, 0);

11-22 CD/Streaming Library

Run-Time Library Overview

Then, when using CdGetSector() to read data, the first 12 bytes (3 words) should be read. This contains the
sector address in CdlLOC format. Skipped sectors can be avoided by checking to see if there is continuity
with the previously read sector address.

......
CdGetSector(buf, 3);
if (CdPosToInt((CdlLOC *)buf) != prev_pos+1)

return(-1);
else

prev_pos++;

CdGetSector(bufp, 512);
bufp += 512;
......

Analysis of Callbacks

Whether or not sector data is ready can generally be determined by the callbacks in the CdReady() or
CdReadyCallback() functions. Please note that unlike other callbacks, the libcd callback uses two
parameters.

CdReadyCallback(callback);
....

void callback(u_char intr, u_char *result)
{
....
}

Note that in this example, a call is made even if the read operation fails. The intr parameter can be used to
determine if the callback operation was successful or not. Read errors will not be properly caught if this
parameter is not checked. Please refer to the cd/tuto sample programs for details on how to do this. In the
result buffer, the return value of the last command issued is saved in an 8-byte array and the actual result
array (8 bytes) is saved. The data saved in the result buffer depends on the command that was issued.

Deleting Callbacks

When a callback completes it should be cleared quickly.

CdReadyCallback(callback);
/* Operation corresponding to CdRead() */
CdReadyCallback(0);

In this example, if the clearing of the final callback is omitted, a CdlDataReady event could be generated
later due to other factors. This can result in a function callback() being activated at an unexpected time. In
cases where the function callback() rewrites main memory, data could be destroyed unpredictably resulting
in a bug.

Caution should also be exercised when a CdControl() is issued from a callback which has been set up by
CdSyncCallback().

CdSyncCallback(callback);
...
void callback(u_char intr, u_char *result) {

....
CdControl(CdlSeekL,);
...

}

In this example, a callback is activated after the completion of the CdlSeekL issued from within the
callback(). Depending on the way the code is written, this could result in a recursive call to CdlSeekL,
leading to an endless loop.

CD/Streaming Library 11-23

Run-Time Library Overview

Watch Dog

At the same time that error handling is included to handle individual errors locally, time-out procedures and
monitoring procedures should be included that periodically check (i.e. every few Vsyncs) the state of the
CD-ROM subsystem to handle unavoidable errors. This kind of "watch dog" operation allows the system to
return to normal operating mode after a fixed interval regardless of the cause of the error.

Playing Back CD-DA/CD-XA

Playback of CD-DA/CD-XA can be halted by a seek error or by inappropriately opening the cover. The
status of the CD-ROM can be polled by periodically issuing the CdlNop command. The status of the
subsystem is stored in the first byte of the result buffer for CdlNop. If the CdlStatPlay bit in this byte is not
on, the appropriate track should be played back again.

Since logical accesses with CdlSeekL and CdlGetlocL retrieve the position by reading the CD-ROM sector
header, these commands cannot be used for CD-DA tracks. Logical access can be performed for CD-XA
tracks, but this operation will fail if a seek is being performed. In particular, if a CdlGetlocL is issued, it is
necessary to check to see if a read (playback) is being performed.

VSyncCallback(vcallback);
...

static CdlLOC pos;
vcallback(void)
{

int ret;

/* if normal, polling */
if ((ret = CdReady(1, result)) == CdlDataReady) {

if (CdLastCom() == CdlGetlocL)
pos = *(CdlLOC *)result;

CdControlF(CdlGetlocL, 0);
}

/* if error, retry */
else if (ret == CdlDiskError)

CdControlF(CdlReadS, (u_char *)&pos);
}

In this example, the "watch dog" function may not operate properly. This is because CdlGetlocL may be
performed while a seek is taking place, resulting in a CdlDiskError. Thus, CdlSeekL and CdlGetlocL would
be repeated indefinitely. The first three bytes of the result buffer for CdlGetlocL provide the sector position
in CdlLOC format.

11-24 CD/Streaming Library

Run-Time Library Overview

When a Data Read is in Progress

It is possible for a CdlDataReady event to be interrupted in the middle of a CD-ROM read for the same
reason as when an audio track is being played. This condition can be reliably detected by saving the time
stamp for when CdlDataReady was issued last and restarting all read operations if the time stamp has not
been updated for a fixed period of time (on the order of a few seconds).

void callback(u_char intr, u_char *result)
{

.....
called_time = VSync(-1);
....

}

main()
{

.....
CdReadyCallback(callback);
....
while (1) {
....

if (VSync(-1) > called_time + TIME_OUT)
break;

}
}

For sections where an endless loop waiting for a CdlDataReady may occur, there should be a way to exit
the loop after a fixed time period has elapsed.

Other

Return Value for CdReadSync

When CdReadSync() is issued in non-block mode, the number of remaining unread sectors is returned.
Note that CdRead() performs a retry internally if a read error occurs, so the return value may not always
decrease consistently.

Error Correction in CdRead

Starting with ver 3.5, CdRead() internally checks the continuity of sector headers to prevent skipping
sectors during reads. Thus, a sector will not be read if the sector header information is incorrectly recorded.
If there are an extremely large number of errors in CdRead(), the recording format of the disc should be
checked.

High-Level Functions

High-level functions which perform a number of operations together are provided for some specific
functions. High-level functions should be used if speed is not an issue. Please refer to the "Function
Reference" for details.

CdReadFile: reads a file from the CD-ROM

Format: int CdReadFile(char *file, u_long *addr, int nbyte)

Parameters: file file name
addr destination main memory address
nbyte size of data to be read

CdReadExec: Load executable file from CD-ROM

Format: struct EXEC *CdReadExec(char *file)

Parameter: file executable file name

CD/Streaming Library 11-25

Run-Time Library Overview

CdPlay: Plays back CD-DA track

Format: int CdPlay(int mode, int *tracks, int offset)

Parameters: mode playback mode
tracks array indicating the tracks to be played back
offset index of tracks to begin playing

Operations Required for Swapping CDs

For titles that require swapping CDs without resetting the main unit during the game, the following
operations should always be performed to prevent problems when the program reaches the market.

Operations to be Performed Before Swapping CDs

(Required)

Before swapping CDs (before outputting the "Replace CD" message), the CD subsystem should be set to
standard speed mode.

(Optional)

After setting standard speed mode, use CdlStop to stop rotation of the CD.

Sample code for setting standard speed mode is shown below.

com = 0;
CdControlB(CdlSetmode, &com, result);

Detecting a Swapped CD

To see whether the CD has been replaced, the following two tests should be performed: (A) determine
whether the cover has been opened; and (B) determine the spindle rotation. Either test can be performed
using the CdlNop command.

CdControlB(CdlNop, 0, result); /* char result[8]; */

(A) The opening and closing of the cover is reflected in the CdlStatShellOpen bit of result[0]. The
CdlStatShellOpen bit detects an open cover, and has the following settings:

Cover is open: always 1

Cover is closed: 1, the first time this condition is detected, 0 for subsequent times

Thus, if this bit makes a transition from 1 to 0, it can be assumed that the CD has been swapped.

(B) Use the CdlNop command and wait for bit 1 of result [0] (0x02) to change to 1.

Operations to be Performed Immediately after Swapping a CD

When the CD has been replaced and the cover has been closed, the CD subsystem begins reading the
TOC data. While this operation is being performed, commands other than CdlNop and CdlGetTN should
not be issued. The CdlGetTN command is used to determine when the TOC read operation has
completed. If this command executes successfully, the reading of TOC data will be finished and commands
can execute normally. The CdlGetTN command should be issued repeatedly until it is successful.

CdControlB(CdlGetTN, 0, result); /* char result[8]; */

11-26 CD/Streaming Library

Run-Time Library Overview

Checking for PlayStation Disc

The logical access command CdlReadS/N should be issued to check to see that the mounted CD is a
PlayStation disc (black disc).

A command error is generated when a logical access is performed on a CD not recognized as a
PlayStation disc. Unlike the standard CdlDiskError, the command error generates a CdlDiskError while also
setting

bit 0 of result [0] (0x01)

bit 6 of result [1] (0x40)

to 1.

If a command error has been detected, it will not be possible to perform a logical access. This can occur if
the wrong CD is mounted (such as a CD-DA) or if the CD has not been properly mounted.The only way to
recover from a command error is to open the cover and remount the CD, so a message indicating this
should be output, and the operation should be reissued.

When a game involves a logical access, e.g. loading data, immediately after a CD swap, the command can
also check to see that the mounted disc is a PlayStation disc. If there is no logical access command (such
as when a DA track is to be played back), there should always be a dummy read to check the disc.

If the mounted disc is a standard CD-ROM such as a CD-DA disc, the operations up to and including step
(3) will execute normally. Therefore, discs should always be checked to see that they are PlayStation discs.
The debugging station will recognize CD-Rs as well as standard CD-ROMs as PlayStation discs, but the
PlayStation will only recognize black discs as PlayStation discs.

Other

• Steps (1) - (3) must always be performed in standard speed mode.

• The commands in steps (1) - (3) must always be issued using CdControlB to check that the command
has successfully completed. The example above has been simplified for the purpose of explanation,
but the results from each command should be checked with certainty.

• Relevant messages should be output during CD detection as needed.

Warnings Regarding Changing the Motor Speed in the CD Subsystem

In the PlayStation CD subsystem, it is necessary to maintain a fixed interval between switching speeds and
issuing certain commands. If this is not handled properly, the problems which are described below will
occur. This could result in a slew of complaints from customers, so programs should deal with these
possibilities very thoroughly.

(Problem)

When a command to move the CD head (CdlSeekL/P, CdlReadS/N) is issued immediately after the CD
transfer speed is changed, the system will lose control of the head, resulting in strange sounds coming
from the CD.

This problem occurs because timing problems in the CD subsystem prevent proper control of the head
immediately after the transfer speed has changed. In the worst case scenario, a command to move the
head issued immediately after a speed change will result in the head running amok and then stopping when
it hits the mechanical stopper. When this happens, the CD subsystem will recover control of the head so
the program will not crash. Furthermore, when the head runs amok and hits the stopper, the safety
mechanism will operate so there is no danger of damage to the mechanism. However, the operation of the
safety mechanism will result in a strange sound, which could lead to complaints from customers.

CD/Streaming Library 11-27

Run-Time Library Overview

The functions/commands relating to head movement are as follows:

CdRead(int sectors, u_long *buf, int mode)
CdRead2(long mode)
CdSearchFile(CdlFILE *fp, char *name)
CdReadFile(char *file, u_long *addr, int nbyte)
CdReadExec(char *file)
CdPlay(int mode, int *tracks, int offset)

CdlSeekP
CdlSeekL
CdlReadS
CdlReadN
CdlPlay

The following measures should be taken if any of the above functions or commands are to be issued after a
change in transfer speed.

(Countermeasure)

If a command to move the CD head is to be issued after a change in CD transfer speed, always leave an
interval of at least three vsyncs.

Example:
:
com = CdlModeSpeed;
CdControl(CdlSetmode, &com, 0);
:
:
/* Perform an operation that takes up at least three vsyncs */
/* For example, VSync(3); */
:
:
ret1 = CdControl(CdlSeekL, &pos, result);
ret2 = CdControl(CdlReadN, &pos, result);
:

This will prevent situations where the head cannot be properly controlled. The same problem will occur if a
parameter to the functions below results in a change in transfer speed. Therefore, transfer speed should
not be changed using parameters for these functions. Instead, transfer speed should be changed manually
(with an interval of three vsyncs or more).

CdRead(int sectors, u_long *buf, int mode)
CdRead2(long mode)

Please note that the CD subsystem transfer speed will be set to standard speed after the following
functions are executed.

CdInit(void)
CdReset(int mode)

Libcd Message Reference

The error messages from libcd are described below. The levels here correspond to the modes in
CdSetDebug().

Table 11-19: Error levels

level output conditions

0 always output
1 output if debug level is 1
2 output if debug level is 2

11-28 CD/Streaming Library

Run-Time Library Overview

CD timeout

Format: CD timeout: [pos] ([status]) Sync=[sync], Ready=[ready]
Level: 0
Parameters: [pos] the position where the timeout occurred

[command] the command that was issued last
[sync] last CdSync status
[ready] last CdReady status

Example: CD timeout; CD_sync: (CdlNop) Sync=NoIntr, Ready=NoIntr
Reason: A callback was not generated from the CD-ROM subsystem within the expected time

period.

CDROM:
unknown intr Unknown Interrupt from Subsystem

Format: CDROM unknown intr ([num])
Level: 0
Parameter: [num] susystem status
Reason: An undefined subsystem status was obtained.

Normal subsystem status is as follows:
CdlDataReady 0x01
CdlComplete 0x02
CdlAcknowledge 0x03
CdlDataEnd 0x04
CdlDiskError 0x05

CD_init Initialization Data for Subsystem

Format: CD_init: addr=[addr]
Level: 0
Parameter: [addr] start address of bios function table
Reason: Occurs when the start address of the bios function is set by CdInit()/CdReset().

CdInit:
Init failed Initialization Failed

Format: CdInit: Init failed
Level: 0
Parameters: None
Reason: Occurs in many cases when the CdlStatShellOpen flag is set. In these cases,

subsequent attempts will be successful.

DiskError

Format: DiskError
Level: 0
Parameters: None
Reason: A fatal error was generated.

DiskError A Fatal Error was Generated

Format: DiskError
Level: 0
Parameters: None
Reason: The command could not be executed or data could not be properly read.

CD/Streaming Library 11-29

Run-Time Library Overview

CdRead:
sector error Sector Addresses were not in Sequence

Format: CdRead: sector error
Level: 0
Parameters: None
Reason: For some reason, the addresses in the sector data were not in sequence. In this case,

assume that there was a skipped sector during CdRead(), and retry from the first
sector.

CdRead:
Shell open The Cover (Shell) was Opened During a Read.

Format: CdRead: Shell open
Level: 0
Parameters: None
Reason: The cover was opened during execution of CdRead(). In this case, CdRead() will return

to the first sector and retry.

CdRead:
retry A CdRead Retry was Generated

Format: CdRead: retry
Level: 0
Parameters: None
Reason: CdRead() returned to the first sector and a retry was performed.

No TOC found: An Audio Track was not Found.

Format: No TOC found: please use CD-DA disc
Level: 0
Parameters: None
Reason: The CdPlay() function could not be executed since no audio track exists. This error is

also generated when no disc is mounted.

cbdataready: CdlDataEnd Automatic Repeat Generated

Format: cbdataready: CdlDataEnd (track=[track],time=[time])
Level: 0
Parameters: [track] number of track for which playback was completed

[time] absolute time since the last ResetCallback() was called
Reason: An automatic repeat was generated in the background during the execution of

CdPlay().

track overflow

Format: [track]: track overflow
Level: 0
Parameters: [track] the number of the track that was to be played next
Reason: CdPlay() cannot begin playing track number [track]. The corresponding track does not

exist on the disc.

11-30 CD/Streaming Library

Run-Time Library Overview

com= An Error was Detected in the Issued Command

Format: com=[command],code=([result0]:[result1])
Level: 1
Parameters: [command] the last command issued

[result0] the first byte in the result buffer from CdSync
[result1] the second byte in the result buffer from CdSync

no param Parameters of Primitive Command were not Set.

Format: [command]: no param
Level: 1
Parameters: [command] the last command issued

CdSearchFile: Detailed Information on CdSearchFile

Format: CdSearchFile: disc error
[name]: path level ([num]) error
[name]: dir was not found

Level: 1
Parameters: [name] filename to be searched

[num] depth of path
Reason: The root directory could not be read. The disc is not an ISO-9660 format disc.

CD_newmedia: Detailed Information Regarding Retrieval of Root Directory for CdSearchFile

Format: CD_newmedia: Read error in cd_read(PVD)
CD_newmedia: Disc format error in cd_read(PVD)
CD_newmedia: Read error (PT:[pos]
CD_newmedia: searching dir..\n"));

[min0]:[sec0]:[sector0]
[min1]:[sec1]:[sector1]
........

Level:2
Parameters: [pos] position of root directory

min(n)] position of directory (in minutes)
[sec(n)] position of directory (in seconds)
[sector(n)] position of directory (sector)

Reasons: PVD sector cannot be read.
Format of PVD sector is not correct.
Format of sector is not correct.
The root directory cannot be read.
If the root directory can be read, its contents are output.

CD/Streaming Library 11-31

Run-Time Library Overview

CD_cachefile: Display Contents of Current Directory of CdSearchFile

Format: CD_cachefile: searching...
([min0]:[sec0]:[sector0])
([min1]:[sec1]:[sector1])
.......
CD_cachefile: [num] files found

Level:2
Parameters: [min(n)] position of files in current directory (in minutes)

[sec(n)] position of files in current directory (in seconds)
[sector(n)] position of files in current directory (sector)
[num] number of files in current directory number

Streaming Library Overview

The streaming library is a group of functions for getting realtime data such as movies, sounds or vertex data
stored on high-capacity media in units called frames. A frame consists of one or more sectors, the smallest
unit of data on a CD-ROM.

High-capacity media at the present is assumed to be CD-ROM, semiconductor memory, or a hard disk;
the current version supports CD-ROM.

A single frame of data obtained using the streaming library is guaranteed to be complete, have no
omissions, and be contiguous.

The library has the following functions.

• Synchronous processing of CD-ROM and video
• CD-ROM data error processing
• Continuous data reading
• Suspend processing
• Complete processing

The streaming library is responsible for accessing the CD-ROM and putting the data needed, in units of
time, into memory. The user program handles displaying this data on the screen and outputing it as sound
and so forth.

Streaming

Streaming is the process of continuously reading data from CD-ROM and transferring it to main memory. It
is used for realtime processing of data, such as playing video or 3D vertex animation. The process of
continuously reading CD-ROM sectors makes full use of the CD-ROM transfer rate.

Streaming combines data processing units (1 frame of compressed image data, etc.) consisting of multiple
sectors in main memory, and transfers the header pointer to the application.

Synchronization Control

When continuously reading and processing sector data, one frame must be processed in less than the time
it takes to read one frame from the CD-ROM. If this does not happen, the processing cannot keep up, CD-
ROM data accumulates, and the buffer overflows.

11-32 CD/Streaming Library

Run-Time Library Overview

However, frame processing of is not synchronized with CD-ROM reading, so processing must complete in
less time it takes to read the frame. This makes synchronization difficult.

The streaming library solves the problem of synchronization. If processing of one frame exceeds the time it
takes to read one frame, the read data is discarded in increments of frames. This mechanism ensures that
data read from the CD-ROM has integrity at the frame unit level, and that data is always read, processed
and synchronized at high speed. This function is implemented by using a ring buffer to store CD-ROM
data.

However, depending on the application there will be times where you will definitely not want to discard the
frame. At such times, a means for making time adjustments by returning the head is provided. Since
synchronization is accompanied by head access in this method, XA audio and streaming cannot be used at
the same time. Refer to StGetBackLoc andd StRingStatus.

Ring Buffer

The streaming library has a ring buffer that is used to store and lock data.

The ring buffer size is optional in units of sectors, requiring that the main program ensure the integrity of this
area. This is reported by StSetRing(). When the programmer has finished processing that data, he or she
needs to release the lock. Releasing the lock is done with StFreeRing().

When the ring buffer fills up with locked data, the library discards data in units of frames. When the lock is
released, data is read.

The library automatically adjusts the end of the ring buffer address so that it does not hit in the middle of
one frame of data.

Ring Buffer Format

The ring buffer region is broadly divided into two regions, each of which is a ring buffer. The upper part is a
header region for addresses, and the lower part is the data region.

The header region is a ring buffer with 8 words (32 bytes) in 1 sector. The data region is a ring buffer with
504 words (2016 bytes) in 1 sector.

CD/Streaming Library 11-33

Run-Time Library Overview

For example, if the ring buffer size is 4, the following data reading occurs.

Figure 11-4: Ring Buffer Size 4 Example

SECTOR 0 HEADER

SECTOR 1 HEADER

SECTOR 2 HEADER

SECTOR 3 HEADER

SECTOR 1 USER DATA

SECTOR 0 USER DATA

SECTOR 2 USER DATA

SECTOR 3 USER DATA

32-byte sectors

2016-byte sectors

When data is read from a CD-ROM, that sector is locked.

When StGetNext() is called, the frame starting address is returned when a frame's worth of data is
available. When the programmer finishes processing this frame of data, the frame region is released using
StFreeRing(). New data may be read from the CD-ROM to the released region.

Memory Streaming

If one sequence is rather large going into the ring buffer region and reading stops before the ring buffer
overflows, the sequence may be repeated not from the CD-ROM but by streaming from memory. (There is
a limit to the number of times a sequence may be repeated.)

If the end_frame argument in StSetStream() and StSetEmulate() is set as 0,reading from the CD-ROM may
be automatically halted at the ring buffer cutoff.

The processing described above makes it possible to implement memory streaming without ring buffer
looping.

11-34 CD/Streaming Library

Run-Time Library Overview

Interrupt Control of 24-Bit Movie Playback Time

The function StCdInterrupt() performs interrupt control during streaming. This function is called
automatically by interrupts from the CD-ROM, and usually does not need to be executed.

However, this function does relatively large 2K-byte DMA transfer from CD-ROM to main memory, so it
occupies the bus for a relatively long time. A method for controlling the calling of this function is provided.
This function is used when playing RGB 24-bit movies.

If bit 1 of 24-bit mode is set ON in the loc mode arguments in StSetStream() and StSetEmulate(),
StCdInterrupt() is not called automatically. Instead, a flag called StCdIntrFlag is set. Timing can be
controlled by the programmer by watching for this flag and calling this function at an appropriate time.

Interrupt Functions Used

The streaming library uses the following two interrupt functions.

Table 11-20: Interrupt Functions

Function name Details

CdDataCallback Sector data transfer completion callback
CdReadyCallback Sector data ready callback

Run-Time Library Overview

Chapter 12:
Extended CD-ROM Library

Table of Contents

Overview 12-3
Library and Header Files 12-3

Description of libds 12-3
Description 12-3
Relationship with libcd 12-3
Streaming Functions 12-3
libapi Functions 12-4

Differences from libcd 12-4
Primitive Commands 12-4
Structures 12-4
Functions 12-5
Processing Speed 12-5
Compatible Functions 12-5

Initialization and Exit 12-5
System Initialization 12-5
Resetting after Initialization 12-5
Exiting the System 12-6
Caution 12-6

The Command Queue 12-6
Issuing Commands 12-6
Confirming Completion of Command 12-7
Checking Command Queue Status 12-7
Timing 12-8
Error Operations 12-8
Callbacks 12-8
Multiple Operations 12-8

Command Packet 12-9
Issuing Command Packets 12-9
Checking for Completion 12-9
Timing 12-9
Error Operations 12-10

The Simple Callback 12-10
Features of the Simple Callback 12-10
Recovery Behavior 12-10
Description of Callback Function 12-11
Exiting the System 12-11
System Operation when Opening and Closing the CD Cover 12-11
Caution 12-12

Other 12-12
Opening and Closing the CD Cover 12-12
Notes Regarding Swapping of CDs 12-12
Transfer Speed Change 12-13

12-2 Extended CD-ROM Library

Run-Time Library Overview

Pre-seeking 12-13
Performing a Continuous Read to Access Multiple Files 12-13
The Outer Three Minutes Problem 12-13
Notes Regarding DslPlay, DslReadN, DslReadS 12-14
Completion of Data Reads 12-15

Extended CD-ROM Library 12-3

Run-Time Library Overview

Overview
The extended CD-ROM library (libds) provides a new interface while using the kernel from the existing CD-
ROM library (libcd). Libds implements a command queue which accommodates speed differences between
the main CPU and the CD subsystem. libds also performs PlayStation-specific processing, such as operations
involving the opening or closing of the CD cover.

This chapter assumes familiarity with libcd and mainly presents differences from libcd.

Library and Header Files

The library file for libds is libds.lib ; programs that use services from libds must link with this library. Since
libds uses libcd to control the CD subsystem, libcd.lib (version 4.0 or higher) must be linked as well. You
must also link version 4.0 or higher of libetc.lib .

Source code must include the header file libds.h .

Description of libds

Description

Libds is a new interface implemented on top of the libcd kernel system. An independent kernel system is
installed over libcd's control routines so that the CD subsystem can perform operations such as command
queue control and operations when the CD cover is opened. Features equivalent to those provided by libcd
are provided, programs can be updated easily.

Figure 12-1: CD libraries

Kernel

InterfaceInterface

libcd.lib libds.lib

Relationship with libcd

The kernel system and the command queue used by libds operate exclusively from the libcd functions.
Consequently, calling a libcd function while libds is being used will destroy the kernel system and the
command queue. Thus, when libds is being used, libcd functions should not be used (functions beginning
with "Cd", including CdInit()).

Streaming Functions

Libds cannot be used simultaneously with libcd, but streaming should be performed normally using the
St*() functions. The St*() functions are part of libcd.lib, but they do not affect libds operations since they do
not control the CD subsystem. When initiating streaming, the functions and commands from libds should
be used (such as DsRead2() and the DslReadS command).

12-4 Extended CD-ROM Library

Run-Time Library Overview

libapi Functions

The functions in libapi used for CD control (such as 96_init, LoadExec, Load) should not be used when
libds is running. If these functions need to be used, they should be used after libds is finished.

Differences from libcd

Primitive Commands

The primitive commands perform the same operations as libcd. The command codes are redefined in
libds.h, with the initial "Cdl" in the symbols being replaced by "Dsl".

Table 12-1: Primitive Commands

Symbol Code Type Details

DslNop 0x01 B NOP(No Operation)
DslSetloc 0x02 B Set target location for seek
DslPlay 0x03 B Begin playing CD-DA
DslForward 0x04 B Fast-forward
DslBackward 0x05 B Rewind
DslReadN 0x06 B Start reading data (with retry)
DslStandby 0x07 N Wait while disk continues spinning
DslStop 0x08 N Stop disk rotation
DslPause 0x09 N Pause at current location
DslMute 0x0b B CD-DA mute
DslDemute 0x0c B Release mute
DslSetfilter 0x0d B Select ADPCM sector to play
DslSetmode 0x0e B Set basic mode
DslGetparam 0x0f B Get final status, operation mode
DslGetlocL 0x10 B Get logical location (data sector)
DslGetlocP 0x11 B Get physical location (audio sector)
DslGetTN 0x13 B Get number of TOC entries
DslGetTD 0x14 B Get TOC
DslSeekL 0x15 N Logical seek (Data sector seek)
DslSeekP 0x16 N Physical seek (Audio sector seek)
DslReadS 0x1b B Start reading data (no retries)

Structures

For each structure used in libcd, libds contains an equivalent structure. The initial "Cdl" in the symbols for
the structures are replaced with "Dsl".

Table 12-2: Structures

Symbol Symbol under libcd Details

DslATV CdlATV Audio attenuator
DslFILE CdlFILE 9660 file descriptor
DslFILTER CdlFILTER ADPCM channel
DslLOC CdlLOC CD-ROM location

Extended CD-ROM Library 12-5

Run-Time Library Overview

Functions

Libds contains functions equivalent to those in libcd. The initial "Cd" in the symbols are replaced with "Ds".
However, some functions use different arguments or involve different timings. Please refer to the reference
material for details on specific functions.

Processing Speed

Libds uses a command queue to manage primitive commands. Thus, precise processing speeds (timing)
will vary from those in libcd.

In libcd, if a primitive command is issued while a previous command is still executing, the function that
issued the new command (such as CdControl()) blocks and waits for the previous command to finish. Once
the command has completed, the function issues the new command.

With libds, however, if a command is issued when another command is executing, the new command is
entered into a command queue and the function that issued that command will exit at that point. When the
previous command completes, and at every VSync, an evaluation is made whether a queued command
can be executed. If the command can be executed, it is sent to the CD subsystem.

The advantage of this method is that CPU processing is not blocked when a command is issued,
regardless of the state of the CD subsystem. Also, if multiple commands are issued simultaneously,
commands can be issued (entered into the queue) without waiting for the other commands to finish.

Compatible Functions

The execution of the primitive commands in libds are all performed as non-blocking operations. However,
libds also provides functions that correspond to CdControl (CdControlB) from libcd.

Initialization and Exit

System Initialization

When libds is used, DsInit() must be executed at the start of the program.

int DsInit(void);

DsInit() must be called after ResetGraph() and PadInit(). Once DsInit() has executed, it will not be possible to
control the CD subsystem through non-libds environments (such as libcd or libapi). DsInit() internally
initializes libcd, so CdInit() does not need to be called even if the streaming library (the St*() functions) will be
used.

Resetting after Initialization

After DsInit() is used to initialize the system, it should not be called again as results may be unpredictable. If
the system needs to be reset during normal operations, DsFlush() should be used instead.

void DsFlush(void);

DsFlush() flushes the CD subsystem and clears the command queue (to be described later). If for some
reason the system needs to be restored to its original state, DsReset() should be used.

int DsReset(void);

Using DsReset() will clear the callback functions set by the program, so these functions should be
reinstated after resetting.

12-6 Extended CD-ROM Library

Run-Time Library Overview

Exiting the System

When activating a child process (.EXE), the libds system should be exited. Use DsClose() to exit the system.

void DsClose(void);

After the child process is finished, DsInit() can be called if the system needs to be used again.

Caution

DsFlush(), DsReset() and DsClose() will not stop data read (playback)operations. Data reads (playback)
must be explicitly halted from the program by issuing a DslPause. DslPause should be used with DsFlush(),
DsReset() and DsClose().

For example,

:
while(DsControlB(DslPause, 0, 0) == 0);
DsClose();

:

Incorrect operation may result if after exiting the system, LoadExec or a similar operation is performed
during a data read (playback).

The Command Queue
The command queue is a facility that monitors the state of the CD subsystem and controls the issuing and
completion of primitive commands.

When a command is issued it is added to the queue. The command is sent to the CD subsystem when the
subsystem is ready to receive the command.

Another function of the command queue is to automatically perform those processes necessary for the
operation of the CD subsystem. For example, operations that are performed when the cover is opened are
handled automatically by the system. While these operations are being performed, commands cannot be
sent to the CD subsystem, but they can be entered into the queue and executed once the operations have
completed.

Issuing Commands

The DsCommand() function is used to send primitive commands to the command queue.

int DsCommand(
u_char com, /* command code */
u_char* param, /* command parameter (4 bytes) */
DslCB func, /* pointer to callback function */
int count) /* retry count (-1: unlimited retries) */

The third argument is a pointer to the callback function which will be invoked when the command has
completed. Callback functions can be set individually for each command, and they will be called only when
the corresponding command has completed.

When a command is successfully issued (entered into the queue), a command ID (>0) is set as the return
value of DsCommand(). This command ID can subsequently be used to get the execution status or result of
command execution.

A 0 will be returned if the command queue is full.

Extended CD-ROM Library 12-7

Run-Time Library Overview

Confirming Completion of Command

In order to see if a primitive command from the command queue has finished executing, a callback function
can be specified when the command is issued, or the DsSync() function can be used.

int DsSync(
int id, /* command id */
u_char* result) /* return value of command (8 bytes) */

DsSync() returns the execution status of the specified command at the point when it is called.

Table 12-3: Confirming Completion of Command

Symbol Meaning

DslComplete Command exited normally
DslDiskError Command returned an error
DslNoIntr Command has not yet been executed
DslNoResult Command has exited but no results are available.

When execution has completed, the return value is stored in 'result' for
(DslComplete, DslDiskError).

The system can hold multiple execution results and the results from two previous commands can be
retrieved. However, older execution results are overwritten, so a DsSync() for a command that is too old will
return a DslNoResult. The number of execution results saved by the system is defined in the macro
constant DslMaxRESULTS.

Checking Command Queue Status

The DsQueueLen() function can be used to retrieve the number of commands currently stored in the
command queue.

int DsQueueLen(void);

DsQueueLen() returns the number of commands stored in the current queue. The command count includes
commands that are currently being executed. The maximum number of commands that can be entered in
the queue is defined by macro constant DslMaxCOMMANDS. The maximum number of commands may
be changed with version upgrades, so please use references to the macro constant.

DsSystemStatus() is used to retrieve the status of the system.

int DsSystemStatus(void);

DsSystemStatus() returns the current status of the system. The return values are as follows.

DslReady Ready to execute command
DslBusy Command being executed or command cannot be executed
DslNoCD CD is not set

DslReady is returned when the CD subsystem is in the normal state and no command is being executed. If
a command is entered in the queue, the operation is begun immediately. In cases where timing is
important, the program should double-check to confirm that the command count in the queue is 0.

DslBusy is returned when a command is currently being executed or when a command cannot be
executed for some reason. Examples of cases when commands cannot be executed include when
operations performed in response to the opening or closing of the cover are taking place, or when
operations cannot be performed for a fixed time due to a change in CD speed. During this time, commands
are added to the command queue and will be sent to the CD subsystem once the status changes.

DslNoCD is returned when there is no CD set in the drive. After operations are performed in response to
the opening or closing of the cover, the status changes to DslNoCD if no CD is detected.

12-8 Extended CD-ROM Library

Run-Time Library Overview

Timing

If execution is possible, a primitive command issued by DsCommand() is sent immediately to the CD
subsystem. When execution is not possible, the command is added to the queue such as when a previous
command has not completed. When the previous command is done, the new command will be issued
(from a sync callback--sync chain).

When operations are blocked, such as when the cover has been opened or closed, the sync chain is
broken. In such cases, the queue is polled with the VSync interrupt.

Error Operations

If an error is generated during execution of a command, the command is re-issued (retry). The number of
times the instruction is retried is specified by the fourth argument of DsCommand() (count). Retries will be
performed count times. The command will not be retried if count is equal to 0.

If the command is not successful after the specified number of retries, the command returns an error and is
removed from the queue.

When count is equal to -1, retries will be performed until the command is successful (unlimited retries).

When the CD cover is opened, all commands entered in the queue are cancelled. If callback functions are
specified for the command, the callback functions are called in the order in which they were queued.

Callbacks

Callback functions are invoked when a primitive command has completed. Callback functions can be
specified individually for each command or one function can be specified as a common callback function.

When a callback function is specified for a command, the function is only called when that particular
command has completed. Once the callback function has been called, the callback setting for that
command is automatically removed.

When a common callback is set, the function will be called when all of the commands have completed or
when an error is generated due to non- synchronization (such as when the CD cover is opened).

The callback function called from each command is described in the following format:

void function(u_char intr, u_char* result);

intr and result refer to the same interrupt information as normal data ready callback functions. Usually this is
Intr ==DslComplete (Command success). Refer to the section titled “Simple Callbacks” for a description on
cases when a callback function is called in intr==DslDiskError

Multiple Operations

Multiple commands can be entered together in the command queue, but this does not mean that multiple
operations (data reads or playback operations) can be performed simultaneously. The data read
commands (DslReadN, DslReadS) and playback command (DslPlay) are considered complete the moment
these commands are accepted by the CD subsystem. Once accepted, these commands are removed
from the queue. If another command is available, it will be issued to the CD subsystem.

Depending on this newly issued command, a data read (playback) operation that is in progress may be
halted and the data read operation may not be able to obtain its requested data.

Consequently, multiple data read (playback) operations cannot be entered in the command queue
simultaneously.

When multiple data read (playback) operations need to be performed, the program should issue a single
command corresponding to the first operation, obtain the desired data (i.e. perform playback over an
appropriate interval), then issue the next command to the queue.

Extended CD-ROM Library 12-9

Run-Time Library Overview

Command Packet
Command packets are one method for issuing primitive commands to the command queue. A command
packet is a series of commands which are issued together. For performing a CD data read (CD-DA
playback),the command packet consists of four primitive commands that are issued in the following
sequence:

• Pause (to end the previous operation)
• Set the operating mode
• Specify the start position
• Perform the read

These four commands can be entered into the queue with a single function call.

Stable CD access can be performed by issuing commands in the form of a command packet. The
operating mode and the start position can be specified with each command packet, so the operation will
not be affected by the previous state of the CD subsystem. Also, if an error occurs, the operation is retried
from the start of the command packet. This makes it more likely that the retry will be successful.

Issuing Command Packets

DsPacket() is used to issue a command packet.

int DsPacket(
u_char mode, /* Operating mode */
DslLOC* pos, /* Start position */
u_char com, /* Read (playback, seek) command */
DslCB cbsync, /* pointer to callback function to be called when

command completes */
int count) /* retry count (-1: unlimited retries) */

When this function is executed, the following four commands are entered into the queue.

• DslPause 0
• DslSetmode mode
• DslSetloc pos
• The command specified by com 0

The commands DslPlay, DslReadN, and DslReadS can be specified for com. If a seek command
(DslSeekL, DslSeekP) is specified for com, everything up to the completion of the seek operation can be
considered part of the packet. This allows pre-seeking.

Checking for Completion

To check to see if a command packet has finished executing, a callback function can be specified when
the packet is issued. Alternatively, the DsSync() function can be used to test for command completion.

The command packet terminates when the execution of all its primitive commands has completed. When
using DsSync(), the packet should be referenced using a command ID just as if it were a primitive
command. The result from the execution of the final primitive command in the packet is saved in the result
parameter of DsSync().

Timing

When a command packet is issued, the individual primitive commands contained in the packet are
processed by the command queue. Therefore, timing is based on the operation of the command queue.

12-10 Extended CD-ROM Library

Run-Time Library Overview

Error Operations

An error in one of the commands in a packet will result in the operation being retried. Unlike regular
commands (commands issued through DsCommand()), command packet retries are performed starting
with the first command in the packet. This is done to make it more likely that the retry will succeed.

For data read (playback) operations, it is recommended that commands be issued as packets rather than
as individual commands.

The number of retries to be performed is specified by the count parameter. As in regular commands, no
retries are performed when count is set to 0, and unlimited retries are performed when count is set to -1. If
the retry count is exceeded when an error is generated, the packet is removed from the queue.

The Simple Callback
When data is to be read from the CD, a data read command is issued and data is transferred from the CD
sector buffer to main memory after each data ready interrupt. The library provides a simple callback feature
to allow easy handling of data ready interrupts.

Features of the Simple Callback

The simple callback is triggered from the data ready interrupt.

Of the operations performed with the interrupt, the ones for cases where data was read normally are
specified by the application. In cases where an error occurs in the library, a recovery operation will be
performed.

To use the simple callback feature, call DsStartReadySystem().

int DsStartReadySystem(
DslRCB func, /* pointer to callback function called for

successful data read. */
int count) /* retry count (-1: unlimited retries) */

Basically, the callback function is triggered only when data was read normally. If an error occurred during
the data read, recovery will be performed automatically by the system.

The count parameter specifies the number of retries to perform. Setting count to -1 specifies unlimited
retries. If the retry count is exceeded and an error is generated, the callback function is triggered with
DslDiskError.

DsStartReadySystem() should be called after checking within the callback for the corresponding read
command (packet) to see if the command was successful. If DsStartReadySystem() is called earlier, error
recovery operations may not function properly. The current CD-ROM system does not distinguish between
errors that correspond to the command and other errors, so the system for the simple callback may
respond to an error from a command. Also, the lead sector may be missed if the system is started to late.

Recovery Behavior

If an error is generated during a read, the simple callback system performs recovery processing. During
recovery, the command is reissued based on the last state saved by the system (the last command issued,
the last operating mode, the last seek position, the current position, etc.).

The seek position for a recovery operation is determined by the system. The restarted read operation is
performed starting from the sector before the one where the error occurred. However, the callback function
specified by func will not be triggered until the sector following the previously successful sector is read.

For example, if an error occurred in the first read operation at the fourth sector, three sectors will have
already been read. Recovery processing is performed, and the callback function will trigger after the data
from the fourth sector is read.

Extended CD-ROM Library 12-11

Run-Time Library Overview

First read: 1, 2, 3, (4)
Error occurs here (callback function is not triggered)

Head is moved to the preceding sector by the recovery
operation

Second read: ... 4, 5, 6
 Callback function triggered from this
sector

Description of Callback Function

The callback function that is triggered for data reads is specified according to the following format.

void function (u_char intr , u_char* result , u_long* subhead);

As in the standard data ready callback function, intr and result refer to interrupt data. Almost always with
simple callbacks, intr has the value DslDataReady or DslDataEnd (only for DA playback).

However, intr has the value DslDiskError when:

• The retry count is exceeded and an error occurs
• The CD cover was opened during reading

Recovery processing for these cases must be handled by the application. When a data read is successful
and the callback function is triggered, the sub-header of the data has already been transferred. This is
because the system looks at the subhead to check the data. The sector buffer pointer is moved to the start
of the data, so the data body can be transferred immediately. The size of the data body is 2048 bytes.

Exiting the System

When the desired data has been read, the simple callback should be exited. To end the simple callback,
use DsEndReadySystem().

void DsEndReadySystem(void);

Exiting from the system must be performed immediately after the last sector has been read. If exiting is
delayed, more read operations can take place. This may generate extra callbacks that can overwrite
memory. Thus, the callback function should exit after the final sector has been transferred.

System Operation when Opening and Closing the CD Cover

When the CD cover is opened and closed during system operation, the simple callback in initial status is
terminated at that point and the callback function set by the application is called by intr==DslDiskError.
Although the application must perform the following recovery, this can be set to be performed with the
simple callback system. Perform the setting with the DsReadySystemMode() function.

int DsReadySystemMode (int mode);
/* mode 0: Simple callback is terminated when cover is opened

1: Recovery from opening/closing is performed
 automatically */

Calling a function when the mode is 1, will cause the system to not terminate if the CD cover is opened
during the operation of a simple callback. The simple callback waits until the cover is closed to reissue the
command and performs recovery in the same way as with normal errors. In such cases, application
callback functions regarding opening the cover are not called. When the cover is closed and the disk is not
set, the simple callback will terminate and the application callback function will be called by
intr==DslDiskError. Confirmation of whether or not the disk has been set can be obtained using the result[0]
DslStatStandby bit (if the disk is not set, the spindle will not move and this bit becomes 0) or with
DsSystemStatus(). Furthermore, the initial status mode is 0.

12-12 Extended CD-ROM Library

Run-Time Library Overview

Caution

• When using the simple callback to perform data reads, the operating mode should be set so that the
sector size is 2340 bytes (DslModeSize1bit ON, DslModeSize0 bit OFF).

• The present library cannot recognize if the disk was changed when the cover was opened and closed.
Therefore, when automatic opening/closing cover recovery is being carried out the player has
intentionally replaced the disk when, this causes incorrect data to be read and there is the possibility
that the game will be unable to continue.

• Simple callback is also used by the following high-level library functions:

DsGetDiskType()

DsPlay()

DsRead()

Therefore, the DsReadySystemMode() change also uses these functions. Particularly since
DsGetDiskType() is used when performing disk exchange, if it is used when recovery has been automized,
problems such as the application being unable to recognize if the player has opened the cover again during
processing may occur. Automatic recovery should not be performed in cases such as when disks are
being swapped.

Other

Opening and Closing the CD Cover

The PlayStation CD-ROM drive requires special operations to be performed if the CD cover is opened or
closed in the middle of an access. libds handles these operations within the system.

When the CD cover is opened, the system changes to the busy state (DslBusy), and commands from the
user are blocked. When the cover is closed, the system performs operations to re-check the disk, then
returns to the ready state (DslReady).

The operation that was being performed when the CD cover was opened will return an error. Also, all the
commands entered in the command queue will be deleted. Thus, it will be necessary to wait for the system
to return to the ready state at which time the operation will have to be repeated.

Immediately after the CD cover is opened or closed, the operating mode and the head position are
initialized, so subsequent operations must take this into account.

Notes Regarding Swapping of CDs

If CDs are swapped during execution, the system performs cover opening/closing operations. However,
the system does not determine the type of CD that is set, so this must be done by the application.

In the libds library, the operations up to CdDiskReady() provided by libcd are performed automatically.
Therefore, the type of CD should be checked once the system status becomes DsSystemStatus() ==
DslReady. The library calls the function DsGetDiskType(), which is equivalent to the function provided in
libcd to determine the CD type. Please refer to the reference material regarding this function.

The following steps are recommended for swapping CDs under libds:

(1) Stop rotation of CD.
(2) Output swapping message. If possible, have the user confirm that a new disk has been set by pressing

a button.
(3) Poll the current status with DsStatus() to confirm that the cover has been opened (DslStatShellOpen bit

ON).
(4) Wait for DsSystemStatus() == DslReady.

Extended CD-ROM Library 12-13

Run-Time Library Overview

(5) Determine the type of the CD using DsGetDiskType() and confirm that the CD is a PlayStation disk.
(6) Confirm that the disk is the desired disk (check that it isn't a disk from another game, that it is the

proper disk from a series, etc.)

If a DslNoCD is returned at step 4, this means that the library was not able to confirm that a disk was set
(there was no rotation of the CD spindle within a predetermined period). In this case, a message such as
"CD not detected" should be displayed, then processing should return to step 2. Similarly, if a PlayStation
disk is not detected at step 5, a similar message should be output and processing should return to step 2.

Step 3 can be omitted if, in step 2, the user confirms that a disk has been set by pressing a button. Also,
the confirmation of the disk in step 6 should be performed by the application using a method such as
reading expected data from a specific position on the disk.

Transfer Speed Change

When the transfer speed of the PlayStation CD drive is changed, it will be impossible to execute
commands for approximately three frames (1 frame =1/60 second). In libds, the sytem recognizes when the
transfer speed is changed, sets the status of the 3VSync after the change to DslBusy, and blocks the
execution of all commands. The commands issued during this period are stored in the command queue
and since the commands are automatically executed 3VSync after the transfer speed change have passed,
there is no need to wait 3VSync in the application program to issue a command.

Pre-seeking

Data reads can appear to execute more quickly by having the program seek to the start of the next data file
beforehand if the next file to be read is known. Using command packets for seeking is recommended as
retry processing can be automated. This minimizes the load on the main program flow when an error
occurs.

Depending on the situation, the time required for data reads can be shortened by approximately 0.4
seconds when pre-seeking is performed. Also, it is easier to adjust timing when pre-seeking is used if XA
audio is being played back during a game.

Performing a Continuous Read to Access Multiple Files

Reducing seeks is the most effective way to shorten loading time when multiple data files are read. Seeks
can be reduced by laying out the CD so that data files are continuous, permitting a single read to access
multiple files. For each seek eliminated, approximately 0.4 seconds are saved, so five fewer seeks will result
in a loading time that is two seconds shorter.

If the files have different transfer destinations to main memory, the transfer address needs to be changed
during the read operation. This is easy to implement using the simple data callback. The libds sample code
gives an example of how the simple data callback can be used in this manner.

The Outer Three Minutes Problem

With the current CD-ROM subsystem, a seek to the outer three minute range of the CD-ROM can,
depending on the starting point of the seek, result in incorrect seeks. One of the following measures must
be taken to prevent this from occurring.

• Fill the outer three minutes (the final three minutes of data) with dummy data (the dummy data will not
be used).

• If CD-DA is to be used for background music, make the final track three minutes or longer. In this case,
no seeks will be generated for the outer three minutes as long as playback is not performed from the
middle of the track and no repeats are performed within the track. This will allow the CD-ROM
subsystem to operate properly.

12-14 Extended CD-ROM Library

Run-Time Library Overview

• If the outer three minutes must be used as a data area, access the outer three minutes as a single,
continuous file (such as for an opening or closing movie).

The outer three minutes here refers not to the outer area of the physical disc but rather to the outer area of
the region in which data (DA) is recorded.

Notes Regarding DslPlay, DslReadN, DslReadS

With the current CD-ROM system, the commands DslPlay, DslReadN, DslReadS are considered complete
and return a DslComplete once the command has been received by the CD subsystem. However,
processing actually continues past this point, and errors may be generated.

In the following flow,

Command issued ... Success ... Seek completed ... (data read)...
 an error may take place at this point

This type of error will be posted via an interrupt, but it will not be possible to associate the error with a
particular command (the processing of the command is considered complete with the initial Complete).
Thus, the command will not be retried in the command queue. Instead, error processing needs to be
handled by the application.

Furthermore, these errors will not be reflected in the callback functions set for individual commands.

The callbacks that provide notification of these errors are the data ready callback (set with
DsReadyCallback()) and the sync callback (set with DsSyncCallback()), which is independent of a specific
command.

In order to recover from errors, an error recovery routine must be provided in these callbacks, or the status
must be polled until the data read begins.

By setting the id argument for DsSync() to -1, it is possible to retrieve the execution results of the error for
which the corresponding command cannot be determined.

DsStatus() can be used to check to see if a data read has begun.

The following is an example of error handling using polling. In this example, the operation is blocked until
reading is begun. In order to avoid this, the routine that waits for the start of a read needs to be called once
per frame.

:
:

/* issue read command as a packet (unlimited retries)
system will keep on retrying until success */
DsPacket(DslModeSpeed | DslModeSize1, &pos, DslReadN, 0, -1);

/* wait for start of read */
while((DsStatus() & DslStatRead) == 0) {

/* errors found with id == -1 are not handled by the system */
if(DsSync(-1, result) == DslDiskError) {

/* perform retry
in this example, the packet is issued again */

DsPacket(DslModeSpeed | DslModeSize1, &pos, DslReadN, 0, -1);
 }
 }

:
:

Extended CD-ROM Library 12-15

Run-Time Library Overview

Below is an example of the use of the data ready callback.

:
:

/* set sync callback function when issuing packet */
DsPacket(DslModeSpeed | DslModeSize1, pos, DslReadN, cbsync, -1);

:
:

:
/* if sync callback function is successful, hook data ready callback */
void cbsync(u_char intr, u_char* result)
{

if(intr == DslComplete) {
/* by hooking the ready callback here, confusion errors

corresponding to commands is avoided */
DsReadyCallback(cbready);
}

}
:
:

/* Ready callback function
use for data transfer but have it handle recovery on error*/
void cbready(u_char intr, u_char* result)
{

if(intr == DslDiskError) {
/* clear callback ... */
DsReadyCallback(0);
/* ... and then issue packet again */
DsPacket(DslModeSpeed | DslModeSize1, pos, DslReadN,

cbsync, -1);
return;

}
if(intr == DslDataReady) {

/* data transfer routine (omitted) */
}

}

The point to be noted here is that the data ready callback will receive notification of all errors. Since errors
corresponding to commands will be posted as well, the timing for hooking the callback function to the
interrupt must be determined carefully. In this example, the callback function is hooked when the packet
succeeds. If this method is used, the data ready callback must be removed as soon as the read is finished.
Otherwise, read packets might be issued unpredictably. The simple callback handles the error, so the
application does not need to perform any error handling.

Completion of Data Reads

For cases where the application sets up a system where a command is issued to read data from a CD and
data is transferred using the data ready callback, there is a trick to handling the end of the read.

When a read operation is to be ended, issuing the DslPause command will halt operations, but one or two
sectors may be read before the CD subsystem receives the command and halts the operation. Depending
on the callback function hooked to the data ready interrupt, this excess data may be transferred to main
memory, resulting in data loss. In order to avoid this, the callback function must be removed from the
interrupt as soon as the desired number of sectors has been read. Callback functions are unhooked by
calling DsReadyCallback() with an argument of 0. By unhooking the callback function, excess data will not
be transferred to main memory even if extra sectors are read. DslPause should then be issued to halt the
read operation.

12-16 Extended CD-ROM Library

Run-Time Library Overview

Run-Time Library Overview

Chapter 13:
Controller/Peripherals Library

Table of Contents

ETC Library Overview 13-3
Library and Header Files 13-3

Callbacks 13-3
Callback Types 13-4
Callback Initialization 13-4
Callback Termination 13-4
Callback Pointers 13-5
Multiple Callbacks 13-5
Child Processes and Callbacks 13-6
Default Callbacks and Events 13-7
Controller 13-7
Video Mode 13-7

Programming Notes 13-7
VSync Callbacks 13-8
Timing of VSync Interrupts 13-8
The Stack Pointer and Operations Related to Exec Processing 13-9
Switching Callbacks between Processes 13-9
Callback Initialization and Completion 13-10
Child Processes and Callbacks 13-10
Shared Libraries and Callbacks 13-11
Callback Context 13-11

Gun Library 13-12
Library and Header Files 13-12
Button Data 13-12
Location Data in the Horizontal/Vertical Direction on the Screen 13-13
Correction to Location Data in the Horizontal Direction on the screen 13-13
Memory Card 13-14

Multi Tap Library 13-14
Library and Header Files 13-14
Overview 13-14

Controller Library 13-15
Library and Header Files 13-15
Additional features available for DUAL SHOCK controllers 13-15
Receive buffer data format 13-15
Obtaining the horizontal and vertical position with the gun interrupt (terminal type=3) 13-19

Initialization 13-20
Initialization flow 13-20
Identifying the connected controller and obtaining actuator (vibrator) information 13-20
Changes in the return value from the controller connection state function (PadGetState()) 13-21
Using controllers with a Memory Card 13-21
Using the Multi Tap with Memory Cards 13-21

Precautions 13-22

13-2 Controller/Peripherals Library

Run-Time Library Overview

Limitations of the Analog Controller 13-22
Precautions when transmitting data to the controller during specific frames 13-23
Calling PadInitDirect(), PadInitMtap(), and PadInitGun() 13-23

Controller/Peripherals Library 13-3

Run-Time Library Overview

The Controller/Peripherals libraries are primarily comprised of the following libraries:

• ETC library (libetc)
• Gun library (libgun)
• Multi Tap library (libtap)
• Controller library (libpad)

The ETC library (libetc) controls callbacks for performing low-level interrupt processing and controller-
related functions. Functions relating to the controller are also included in this library.

The Gun library (libgun) is provided to detect the position of the gun connected to the PlayStation and
pointed towards the television screen.

The Multi Tap library (libtap) describes the communication services between multiple controllers and
Memory Cards and the PlayStation provided by connecting a Multi Tap to the PlayStation.

The Controller library (libpad) provides services for managing ordinary controllers and DUAL SHOCK
controllers connected to the PlayStation.

Some ancillary Controller/Peripheral functions are also provided in the Kernel library (libapi)

For a complete description of all related Controller/Peripherals structures and functions, please refer to the
Run-time Library Reference.

ETC Library Overview

The ETC library (libetc) controls callbacks. All callback functions used in each library are managed by this
library. At present, functions relating to the controller are also included in this chapter. The details relating to
callbacks and corresponding non-blocking functions are described in the Run-time Library Reference.

Library and Header Files

To use the ETC library, your application must link with the file libetc.lib .

Source code must include the header file libetc.h .

Callbacks

Many functions such as graphics drawing, transferring data to the sound buffer, and loading data from the
CD-ROM, may execute in parallel (asynchronously) in the background. These functions are called non-
blocking functions, because they don’t block the CPU from performing other tasks.

You can define callback functions that execute when the non-blocking function actually terminates. What
actually happens is that when the non-blocking function completes, it generates an interrupt and the
program jumps to the address registered as the callback. When the callback returns, the program returns
to the point where the callback began, and normal processing resumes.

13-4 Controller/Peripherals Library

Run-Time Library Overview

A dedicated local stack is used for a callback function so that control can return to the original state after
the callback returns. All interrupts are prohibited within callback functions. (Areas in which interrupts are
prohibited are called critical sections.)

Figure 13–1: Callback Context

main() {
....

}

callback() {
....

}

Normal section Critical section

Callback Types

The following callbacks are currently supported:

Table 13-1: Callback Types

Function Name Corresponding non-blocking functions

VSyncCalllback
DrawSyncCallback DrawOTag()/LoadImage()/StoreImage()
DecDCTinCallback DecDCTin
DecDCToutCallback DecDCTout
CdSyncCallback CdControl
CdReadyCallback CdControl
CdDataCallback

Callback Initialization

When using callbacks, the local stack must be created in advance, which is done with the initialization
function ResetCallback(). The initialization functions of most libraries already include a call to
ResetCallback(), so it is not usually necessary for an application to call this function explicitly.

The following table shows the initialization functions that call ResetCallback() automatically:

Table 13-2: Initialization Functions that Call ResetCallback()

Function Name Contents

ResetGraph(0) Drawing device initialization
DecDCTReset(0) Decompression device initialization
CdInit(0) CD-ROM initialization
SsInit() Sound source device initialization
PadInit(0) Controller initialization

After calling ResetCallback(), all callback pointers are initialized to NULL(0).

Callback Termination

Callbacks may be temporarily halted by calling StopCallback(). A callback halted by StopCallback can be
restarted by calling ResetCallback() again. Callback function pointers recorded before StopCallback is
called are not saved when the callback is restarted.

Controller/Peripherals Library 13-5

Run-Time Library Overview

Callback Pointers

Function pointers created by a callback are called callback pointers. The callback interface is a low-level
interface, so a single callback is limited to recording one pointer at a time. Setting a new callback discards
the previous pointer. For this reason, the mechanism for creating multiple pointers in a single callback is the
responsibility of the application program.

main(void){ /*Main Program*/
void callback(void);
...
VSyncCallback(callback);
..

}
void (*func)()={ /*callback table*/

func0, /*1st callback to be called*/
func1, /*2nd callback to be called*/
func2, /*3rd callback to be called*/
0,

};
void callback(void) /*parent callback program*/
{

int i;
for (i=0; func[i]; i++)

(*func[i])();
}

Previous callback pointers are discarded when a new callback is created. For this reason, if you are
creating a temporary callback, you must return to the state that existed at the time the pointers were
released.

void(*old)();
void addVSyncCallback(void(*func)())
{

old=VSyncCallback(func);
}
void delVSyncCallback(void)
{

VSyncCallback(old);
}

Multiple Callbacks

The callback context uses one local stack referenced by all current callbacks. Therefore, a callback cannot
be launched from within another callback. When a callback request is generated from within a callback
function, the requested function is held and its process is made to wait until the callback currently running
has terminated.

13-6 Controller/Peripherals Library

Run-Time Library Overview

The example below shows that if event1 and event2 are generated within a callback, execution of the
corresponding callback waits until the callback at the top of the queue finishes processing. Note that time
is required for processing within a callback. However, a callback with a timer used with a root-counter
(RCnt) interface is given preference over normal callback processing.

Figure 13–2: Callback Context

callback0()
..(event0)

callback1()
..(event1)

callback2()
..(event2)

main()
{

....

 return();
}

Normal section Critical section
event0

event2

event1

Child Processes and Callbacks

Part of the callback code and data are linked in memory with the application. The callback code and data
use identical copies of a library, not shared with companion processes, so a shared library cannot be
implemented. Whenever a parent process transfers control to a child process, the callback environment
must be inherited.

The current Exec Interface does not inherit the callback environment automatically, so this operation must
be performed by the application when jumping to a program loaded from CD-ROM or transferring control
to a child process.

The process of environment inheritance is outlined below.

• The parent process
1. Closes all events (CloseEvent)
2. Momentarily halts the callback (StopCallback)
3. Performs a global jump to the child process

• The child process
1. Initializes the callback (ResetCallback)
2. Initializes the new library (CdInit, ResetGraph, etc.)
3. Establishes the new application callback
4. Opens the new event (OpenEvent)

You must return control to the parent process from the child process.

Controller/Peripherals Library 13-7

Run-Time Library Overview

Default Callbacks and Events

The default callback functions of each corresponding callback are registered when a library is initialized.

For example, when CdSyncCallback() is initialized (this function is called when a CD-ROM primitive
command terminates), a callback like the one below is created.

static void def_cbsync(unsigned char intr, unsigned char *result)
{

DeliverEvent(HwCdRom, EvSpCOMP);
}

Termination of commands and data reading can be detected through the event handler when the default
callback is used. Use caution when set.

However, since the default callback is cancelled and the event transmission is halted when a new callback
is created, please be careful.

Controller

Libetc provides a method of communicating with the standard controller:

• Call PadInit() to initialize the controller
• Call PadRead() to begin reading the controller
• Call Pad Stop() to end reading the controller

The content of the initialized controller is scanned once at the time of vertical blanking, and the most recent
condition can be obtained at any time by the PadRead() function.

PadRead() returns a 32-bit integer value. The upper 16 bits are for controller A, and the lower 16 bits for
controller B.

See libetc.h for a description of controller button assignments.

The PadInit/PadRead interface can be used only with the standard controller.

Video Mode

SetVideoMode() function is provided in the library for declaring the present video signal mode. Although the
NTSC mode video signal environment is designed to be the default in the present library and due to the fact
that the SetVideoMode() function mentioned above is called before all other library functions, the related
library determines the mode. It will then be possible to perform operations which conform to the set video
signal mode environment.

Please refer to the related libgpu and libsnd documents.

Programming Notes

The following issues relating to applications programming are further described below:

• VSync callbacks
• The stack pointer and operations related to Exec processing
• Switching callbacks between processes

13-8 Controller/Peripherals Library

Run-Time Library Overview

VSync Callbacks

Although there is only one callback entry internally, the RCnt interface maintains an internal linked list of
callback function pointers. There is no predetermined sequence in which linked callbacks are called from
the system.

VSyncCallback() is used if a single callback needs to call multiple functions in a specific sequence.

/* Main program*/
main(void) {
void callback(void);
...
VSyncCallback(callback);
..
}

/* Callback table */
void (*func)() = {
func0, /* Callback to be called first */
func1, /* Callback to be called second */
func2, /* Callback to be called third */
0,
};

/* Parent callback program */
void callback(void)
{
int i;
for (i = 0; func[i]; i++)
(*func[i])();
}

Timing of VSync Interrupts

VSync interrupts are generated at the beginning of a V-BLNK. Thus, rendering starts at the beginning of the
callback function.

Rendering can be performed with a single buffer if it can be finished within a single V-BLNK interval.
However, the start of rendering will be delayed if a sound driver is activated by the VSync interrupt and
called (with SsSeqCalledTbyT) before the rendering function (DrawOTag). This prevents rendering from
completing before the end of the V-BLNK interval.

callback()
{

SsSeqCalledTbyT();
DrawOTag(ot);
DrawSync();

}

Figure 13–3: Timing with VSync Interrupts (1)

V-BLNK
callback

SsSeqCalledTbyT
DrawOTag

Draw

In the following example, rendering can be performed in parallel with sound driver execution.

callback()
{

Controller/Peripherals Library 13-9

Run-Time Library Overview

DrawOTag(ot);
SsSeqCalledTbyT();
DrawSync();

}

Note that since DrawOTag() is a non-blocking function, it should return immediately.

Figure 13–4: Timing with VSync Interrupts (2)

V-BLNK
callback

DrawOTag

SsSeqCalledTbyT

Draw

DrawSync

The Stack Pointer and Operations Related to Exec Processing

Libsn.lib contains useful functions related to the PC file system. It also contains routines that clear data
areas and set the stack pointer and are performed before invoking main(). Files created with a series of
operations beginning with ccpsx always contain the section main. libsn.lib reads the DIP switch settings on
the H2000 and sets the stack as far back as possible. 2MByte.OBJ and 8MByte.OBJ are provided for
2MByte and 8MByte settings.

A problem may occur when an executable file is called and control returns to the calling process after the
completion of execution. Without creating a linker file, the value of the stack pointer of the executable
program which was called cannot be determined. Even if a value were entered in the Exec structure, it
would be ineffective because of processing prior to main().

In other words, the contents of the calling process's stack is destroyed by the called program. When the
called program completes and tries to return, the return address is missing, resulting in a hang.

Thus, the called program needs to have processing prior to main() that is independent of either
2MBytes.OBJ, 8MBytes.OBJ, or libsn.lib, to ensure that no stack settings are made. This can be
accomplished by linking the called program (which is expected to return) to NONE.OBJ. This is done in
exactly the same way as if 2MByte.OBJ were used.

Switching Callbacks between Processes

With applications that make use of many events and callbacks, there have been reports of crashes when
interrupts are issued while the system is switching between processes. Many of these crashes are due to
callbacks that take place during process switching.

Problems caused by callbacks are difficult to trace and require a considerable amount of time to debug.
Since these problems are not easily reproducible, it is possible for problems to surface after the program
has already hit the market.

The following is a brief description of the callback initialization sequence during process switching. Please
use this as a reference when writing applications.

"Process switching" means transferring control (changing the program counter) to a different program that
is not linked to the same module. Process switching takes place when a child process is activated by a
resident parent process. The initial activation of an application (when control is transferred to PSX.EXE) is
also considered a process switch from the OS to the application.

13-10 Controller/Peripherals Library

Run-Time Library Overview

Callback Initialization and Completion

Callback functions are functions that are automatically called when the corresponding non-blocking
function completes. In other words, when a non-blocking function completes, an interrupt is generated
causing the program to jump to the function address that was saved as the callback.

The initialization function ResetCallback() must always be called when a callback function is used. A
callback may be suspended by calling StopCallback(). A callback that has been suspended by
StopCallback() can be reactivated by calling ResetCallback(). StopCallback() and ResetCallback() should
always be used during process switching.

Child Processes and Callbacks

Data, together with a section of code for the callback, are linked in memory with the application. If shared
libraries are not used, the code and data for the callback will not be shared between processes, and
identical copies of the information will be used for each process.

For this reason, the callback environment will need to be switched when transferring control from the
parent process to a child process.

For the parent process:

(1) Close all events (CloseEvent).
(2) Temporarily suspend callbacks (StopCallback).
(3) Jump to the child process (Exec).

For the child process:

(1) Initialize callbacks (ResetCallback).
(2) Re-initialize library (CdInit, ResetGraph etc).
(3) Reset application callbacks.
(4) Reopen events (OpenEvent).

These operations are also necessary when control returns from the child process back to the parent
process.

Consider the following example.

/* Switching callbacks */

/* Parent: */
main() {

.....

.....
StopCallback(); /* suspend callbacks*/
Exec(&child_program); /*activate child process*/
ResetCallback(); /* reset callbacks*/
.....

}

/* Child: */
main() {

ResetCallback(); /* reset callbacks*/
.....

StopCallback(); /* stop callbacks*/
return;

}

In this example, the child process is activated without switching callbacks, and the function pointers for the
parent callbacks are kept in the callback table (the interrupt jump table).

Controller/Peripherals Library 13-11

Run-Time Library Overview

This means that once the child process starts, interrupts that are generated will invoke the callback
functions linked to the parent program, and control will not be transferred to the callbacks of the child
program. This may lead to unexpected results.

The same analysis applies when the child process completes and control returns back to the parent.

Even if the called process (the child process) executes a ResetCallback() at the beginning, operations will
be unstable if the calling process (the parent process) does not execute a StopCallback() at the end.

Interrupts generated in the interval between the activation of the child process and the reinitialization of the
callback table by ResetCallback() will also produce callbacks from the parent process.

When the system is booted and an application is first executed, the OS sees the application as the first
child process. Thus, for the same reasons as those described above, it is necessary to issue a
ResetCallback() at the start of the program so that all the existing callbacks can be quickly replaced with
callbacks linked to the application.

Shared Libraries and Callbacks

When shared libraries are used, each process can share a single resident callback. In this case, there is no
need to switch callbacks between processes. Even if shared libraries are used, however, it is crucial that
ResetCallback() be executed immediately after an application is launched.

Callback Context

Although a callback is normally executed in the callback context, this is not necessarily always the case.
Many callbacks are activated by means of a hardware interrupt, but when this is detected within the library
function, the callback may be executed in the foreground. This is done in order to reduce meaningless
context switching.

For example, LoadImage() is normally executed in the background, but when the transfer area specified by
the LoadImage function is very small, the actual transfer is terminated before returning from the LoadImage
function. With PlayStation, because the main memory is shared by the drawing subsystem and the CPU, a
reversal of processing terminations such as this by means of bus access timing can occur.

Figure 13–5:

LoadImage()

GPU-Translation

DrawSyncCallback
(Foreground)

return

Since callbacks are prohibited within the LoadImage() function, the callback is held even if the transfer is
terminated within the function. At such times the LoadImage() function will confirm the transfer status
before termination, and even if the transfer has been terminated, the callback function is activated at that
location without the context being switched. As a result, functions which are registered in
DrawSyncCallback() will be activated in the foreground.

Conversely, at LoadImage() termination, if the actual termination has not been completed or the command
remains in the command queue, it is returned as is. Normally, since the termination of the actual transfer is
slower than the LoadImage() function return, this strategy is selected.

Because of this feature, maximum coherency to memory access can be maintained even when extremely
small areas of image (around 8x8) are transferred. However, on the other hand, it is possible for a callback
to be activated in both the foreground and background (callback) contexts. Since the decision as to which
context it is executed in depends on the space situation of the main bus, the CPU, and the subprocessor
at that time, it is impossible to predict.

13-12 Controller/Peripherals Library

Run-Time Library Overview

Normally, there is no need to be aware of which context the callback will be activated in. However, there
are cases when switching the threads within the callback and so on, where the current context situation is
known. In such cases it is necessary to use the IsCallback() function to confirm the current context. If the
IsCallback() returns a true (non-zero) value, the context which was called by that function is shown to be
the callback context.

When switching the threads within a callback, please make sure to confirm the context with the IsCallback()
function.

Gun Library

Library and Header Files

To use the gun library, link with the file libgun.lib .

Source code must include the header file libgun.h .

Button Data

Following are the bufA, bufB buffer structures defined in the InitGun (char *bufA, char*lenA, char*bufB, long
lenB, char *buf0, char *buf1, long len)function.

Table 13-3: Button Data

Byte Contents

0 Receive result
1 ID Higher 4 bits: Controller type

Lower 4 bits: Number of bytes of receive data / 2
(When the lower 4 bits are all 0, it means the number of
bytes of receive data is 32 bytes.)

2,3 Button data

(1) ID
The gun ID is 0x31 (Controller type: 3, Number of bytes of receive data: 2)

(2) Button data
7 6 5 4 3 2 1 0

First byte - - - - S - - -

Second byte � x - - - - - -

S: Start button

�: Trigger of gun

x: Button

Controller/Peripherals Library 13-13

Run-Time Library Overview

Location Data in the Horizontal/Vertical Direction on the Screen

Following are the buf0, buf1 buffer structures defined in the InitGUN (char*bufA, char*ltnA, char*bufB, long
lenB, char*buf), char*buf1, long len) function

The maximum number of receive data is 20.

In order to increase the accuracy of the gun, DMA and interrupt processing are all blocked within the gun
interrupt processing from library 4.0 onwards. Since the overhead increases in Hsync units when the
number of interrupts rises, it is recommended that it be set to a small number.

Table 13-4: buf0, buf1 buffer structures defined in InitGUN

Byte Contents

0 Not used
1 Number of available horizontal/vertical

direction counter value
2,3 Vertical direction counter value 0
4,5 Horizontal direction counter value 0
6,7 Vertical direction counter value 1
8,9 Horizontal direction counter value 1

. .

. .

. .
78,79 Vertical direction counter value 19
80,81 Horizontal direction counter value 19

(The counter value is given as a half word.)

Correction to Location Data in the Horizontal Direction on the screen

The horizontal direction location data currently returns the system clock value which zero clears every H
blank. Therefore, it is necessary to make adjustments in accordance with the screen mode and horizontal
resolution. The following table displays system clock and pixel clock compatibility:

Table 13-5: System Clock/Pixel Clock Conversion

Mode Horizontal direction resolution Coefficient

NTSC 256 0.158532
320 0.198166
384 0.226475
512 0.317065
640 0.396332

PAL: 256 0.157086
320 0.196358
384 0.224409
512 0.314173
640 0.392717

[Pixel value] = [Coefficient] x [System clock value] + [Offset]

13-14 Controller/Peripherals Library

Run-Time Library Overview

Memory Card

When using the Memory Card, set 0 for the InitCARD(0) argument.

InitGun (bufA, lenA, bufB, lenB, buf1, buf2, len);
InitCARD(0);
StartCARD();
_bu_init();
StartGUN();
ChangeClearPAD(0);

Multi Tap Library

It is possible to use up to 4 controllers and Memory Cards cards for 1 port with a Multi Tap.

Library and Header Files

To use the Multi Tap library, you must link with the file libtap.lib .

Source code must include the header file libtap.h .

Overview

The communication can be performed if at least one controller is connected to the Multi Tap. If no
controller is connected, a communication error will occur.

The communication is available only with the port A of the Multi Tap in the software which doesn't use
libtap.lib. In this case, the communication data will be just passed through the Multi Tap in the same way
the controller is connected directly to PlayStation.

The insertion and extraction of the Multi Tap and the controller connected to the Multi Tap are permitted
during the operation.

Table 13-6: Receiving Packet Format

Byte Content

0 Result of receiving
1 ID (0x80)
2 Controller_A Result
3 Controller_A ID
4-9 Controller_A Data
10 Controller_B Result
11 Controller_B ID
12-17 Controller_B Data
18 Controller_C Result
19 Controller_C ID
20-25 Controller_C Data
26 Controller_D Result
27 Controller_D ID
28-33 Controller_D Data

The access to the Memory Card is performed in the same way as the usual operation. The channel is
specified with the "port number x16 + card number", and by setting from 0 to 3 for the card number, the
access to each slot is available.

Controller/Peripherals Library 13-15

Run-Time Library Overview

Table 13-7: Memory Card

Port 1 Port 2

A 0x00 0x10
B 0x01 0x11
C 0x02 0x12
D 0x03 0x13

Caution

When using the Memory Card, the InitCARD argument must be set at '0'.

InitTAP(bufA, lenA, bufB, lenB);
InitCARD(0);
StartCARD();
_bu_init();
StartTAP();
ChangeClearPAD(0);

When the controller is not inserted into the Multi Tap A port, the Multi Tap is sometimes not recognized.
Therefore, please make sure that the controller is inserted into the A port of the Multi Tap when using.
Also, please follow the instructions described in the usage manual.

Controller Library

The controller library (libpad) provides services which allow applications to interact with the controllers, the
input devices of the PlayStation. The library allows applications to directly process data that is received
from the controllers, as well as the ability to dynamically identify each controller. The library also supports
the additional features of DUAL SHOCK controllers.

Please note that this library cannot be used in conjunction with the Multi Tap library (libtap) or the gun
library (libgun). PadInitMtap() and PadInitGun() are provided in libpad for the Multi Tap and gun.

Library and Header Files

To use the controller library, your application must include the file libpad.lib .

Source code must include the header file libpad.h .

Additional features available for DUAL SHOCK controllers

• Query the number of actuators (vibrators) available in the controller.

• Query actuator features.

• Query the current drain of the actuator.

• Set up the data list for controlling the actuator.

• Detect actuator combinations that can be used simultaneously.

• Query the type of terminal supported by the controller.

• Select the terminal type from the program.

• Select the lock/unlock setting of the terminal type selection switch.

Receive buffer data format

The format used to store data in the receive buffer is described below.

13-16 Controller/Peripherals Library

Run-Time Library Overview

At offset 1 in the receive buffer, the upper four bits are used to indicate the terminal type while the lower
four bits represent half the byte count of the data received from the terminal (stored in the receive buffer
starting at offset 3). Please refer to the documentation corresponding to the terminal type for information
regarding the physical layout of the buttons and channels.

Table 13-8: Terminal Types

Terminal Type Controller Name Main Controller Model Number

1 Mouse SCPH-1030
2 16-button analog SLPH-00001 (Namco Ltd)
3 Gun controller SLPH-00014 (Konami Ltd)
4 16-button SCPH-1080,1150,1200
5 Analog joystick SCPH-1110
6 Gun controller SLPH-00034 (Namco Ltd)
7 Analog Controller SCPH-1150,1200
8 Multi Tap SCPH-1070

Table 13-9: Mouse

Offset Contents

0 Receive result 0x00: successful,
other values: failed

1 Upper four bits: 0x1
Lower four bits: (Byte count of received data) / 2

2,3 Button state 1: released, 0: pressed
4 Displacement along the X axis (-128 to 127)
5 Displacement along the Y axis (-128 to 127)

Table 13-10: 16-button Analog

Offset Contents

0 Receive result 0x00: successful,
other values: failed

1 Upper four bits: 0x2
Lower four bits: (Byte count of received data) / 2

2,3 Button state 1: released, 0: pressed
4 Rotation 0 to 128 to 255
5 I button 0 to 255
6 II button 0 to 255
7 L button 0 to 255

Table 13-11: Gun Controller (Konami Ltd.)

Offset Contents

0 Receive result 0x00: successful,
other values: failed

1 Upper four bits: 0x3
Lower four bits: (Byte count of received data) / 2

2,3 Button state 1: released, 0: pressed

Controller/Peripherals Library 13-17

Run-Time Library Overview

Table 13-12: Analog Joystick

Offset Contents

0 Receive result 0x00: successful,
other values: failed

1 Upper four bits: 0x5
Lower four bits: (Byte count of received data) / 2

2,3 Button state 1: released, 0: pressed
4 Position along the X axis (right stick) 0 to 128 to 255
5 Position along the Y axis (right stick) 0 to 128 to 255
6 Position along the X axis (left stick) 0 to 128 to 255
7 Position along the Y axis (left stick) 0 to 128 to 255

Table 13-13: Gun Controller (Namco Ltd.)

Offset Contents

0 Receive result 0x00: successful,
other values: failed

1 Upper four bits: 0x6
Lower four bits: (Byte count of received data) / 2

2,3 Button state 1: released, 0: pressed
4 Position along the X axis: Low-order byte
5 Position along the X axis: High-order byte
6 Position along the Y axis: Low-order byte
7 Position along the Y axis: High-order byte

13-18 Controller/Peripherals Library

Run-Time Library Overview

Table 13-14: Analog Controller

Offset Contents

0 Receive result 0x00: successful,
other values: failed

1 Upper four bits: 0x7
Lower four bits: (Byte count of received data) / 2

2,3 Button state 1: released, 0: pressed
4 Position along the X axis (right stick) 0 to 128 to 255
5 Position along the Y axis (right stick) 0 to 128 to 255
6 Position along the X axis (left stick) 0 to 128 to 255
7 Position along the Y axis (left stick) 0 to 128 to 255

Table 13-15: Receive Data Structure For Multi Tap Controller

Offset Contents

0 Receive result 0x00: successful,
other values: failed

1 0x80

2 Port A Receive result 0x00: successful,
other values: failed

3 Upper four bits: Terminal type
Lower four bits: (Byte count of received data) / 2

4 - 9 Received data

10 Port B Receive result 0x00: successful,
other values: failed

11 Upper four bits: Terminal type
Lower four bits: (Byte count of received data) / 2

12 - 17 Received data

18 Port C Receive result 0x00: successful,
other values: failed

19 Upper four bits: Terminal type
Lower four bits: (Byte count of received data) / 2

20 - 25 Received data

26 Port D Receive result 0x00: successful,
other values: failed

27 Upper four bits: Terminal type
Lower four bits: (Byte count of received data) / 2

28 - 33 Received data

Controller/Peripherals Library 13-19

Run-Time Library Overview

Table 13-16: Button State Bit Assignments (1)

Bit D15 D14 D13 D12 D11 D10 D9 D8

16-button � ↓ � ↑ ST SEL
Analog Controller � ↓ � ↑ ST R3 L3 SEL
Analog joystick � ↓ � ↑ ST SEL
16-button analog � ↓ � ↑ ST
Mouse
Gun controller (Konami) ST
Gun controller (Namco) A

Table 13-17: Button State Bit Assignments (2)

Bit D7 D6 D5 D4 D3 D2 D1 D0

16-button • � • • R1 L1 R2 L2
Analog Controller • � • • R1 L1 R2 L2
Analog joystick • � • • R1 L1 R2 L2
16-button analog A B R
Mouse Left Right
Gun controller (Konami) TRG •
Gun controller (Namco) B TRG

(All bits 1: released, 0: pressed)

Obtaining the horizontal and vertical position with the gun interrupt (terminal type=3)

The horizontal and vertical positions of the gun can be obtained by using PadInitGun(). (For terminal type=6
guns, coordinate information is sent back to the receive buffer during normal communication with the
controller, so this operation is not required.) PadInitGun() simply initializes the interrupt handler for obtaining
horizontal and vertical position information. Therefore, apart from PadInitGun(), the controller
communication environment must be initialized with either PadInitDirect() or PadInitMtap().

Before PadEnableGun() is called, interrupt requests for obtaining the coordinates are sent during each
frame to the port at which the type 3 controller is connected. If coordinate information does not need to be
retrieved from each port, the unneeded interrupts can be suppressed by masking them with
PadEnableGun().

Adjustment of horizontal position data

Currently, the horizontal position data returns the system clock value, which is cleared to zero at each H
blank. This value needs to be adjusted to compute the pixel value as a function of screen mode and
horizontal resolution. The relationship between the system clock and the pixel clock is shown below.

13-20 Controller/Peripherals Library

Run-Time Library Overview

Table 13-18: System Clock-Pixel Clock Conversion Table

Mode Horizontal Coefficient
resolution

NTSC: 256 0.158532
320 0.198166
384 0.226475
512 0.317065
640 0.396332

PAL: 256 0.157086
320 0.196358
384 0.224409
512 0.314173
640 0.392717

[Pixel value] = [Coefficient] x [System clock value] + [Offset]

Initialization

Initialization flow

1) Controlling the DUAL SHOCK controller

1. Initialize the controller environment with PadInitDirect(), PadInitMtap().

2. Set up the receive buffer with PadSetAct(...).

3. Begin communication with the controller with PadStartCom().

4. When connection with the controller has been established, use PadSetActAlign() to set up the
sequence to transmit actuator control data.

2) Controlling other controllers

1. Initialize the controller environment with PadInitDirect(), PadInitMtap().

2. Set up the receive buffer with PadSetAct(...).

3. Begin communication with the controller with PadStartCom().

Identifying the connected controller and obtaining actuator (vibrator) information

1) Identify the controller

The connection state of the controller can be determined with the PadGetState() function.

2) Obtain actuator information

Actuator information is obtained in order to control the actuator.

3) Handle controller swapping, controller mode switching

The return value from PadGetState() changes when controllers have been swapped or the controller
mode has been switched (see below). Controller swapping and controller mode switching can be
continuously monitored using this function.

Controller/Peripherals Library 13-21

Run-Time Library Overview

4) Frequency at which to monitor the controller connection state

The return value from PadGetState() changes only during the vertical retrace interval, so the value need
be polled only once per frame.

Changes in the return value from the controller connection state function
(PadGetState())

1) DUAL SHOCK controllers

1. Controller not connected: PadStateDiscon
↓

2. Controller connection detected: PadStateFindPad
↓

3. Request for actuator information received: PadStateReqInfo
↓

4. Retrieval of actuator information completed: PadStateStable

If the controller changes mode in states 3 - 4, a transition is made to state 2.

2) Other controllers

1. Controller not connected: PadStateDiscon
 ↓

2. Controller connection detected: PadStateFindPad
 ↓

3. Identify controller type: PadStateFindCTP1

If the controller changes mode in state 3, a transition is made to state 2.

Using controllers with a Memory Card

When using a Memory Card, the controller should be initialized after the Memory Card is initialized. The
parameter should be set to '0', as in InitCARD(0). Functions PadInitDirect(), PadInitMtap() should be called
before calling PadStartCom().

InitCARD(0);
StartCARD();
_bu_init();
PadInitDirect();
PadSetAct(...);
PadStartCom();

The parameter of MemCardInit() should also be set to 0 when using the simple Memory Card library
(libmcrd). MemCardInit(0) and MemCardStart() should be called before the controller is initialized.

Using the Multi Tap with Memory Cards

When more than one Memory Card is connected to a single Multi Tap, and a Memory Card access is
performed after any of the Memory Cards are switched, MemCardAccept() should be called for each
Memory Card that is accessed. This is because libmcrd keeps a single directory information buffer for each
port on the main PlayStation unit, so only one directory information set can be controlled when more than
one Memory Card is connected to a single Multi Tap.

13-22 Controller/Peripherals Library

Run-Time Library Overview

Precautions

Limitations of the Analog Controller

The following are limitations of the Analog Controller.

1) Margin of error for the stick center position

When the Analog Controller stick is released, it will naturally try to return to the center position. However,
depending upon the position where the stick is released, it might actually return to an off-center
position. In applications where stick release is determined from stick position information, it is also
necessary to take into account the center position error. In the SCPH-1200, the guaranteed value for
the range within which the stick will return to the center when released is 80 h +/- 25 h.

2) Number of actuators that can be used simultaneously

The Analog Controllers have a vibration feature, but the number of actuators that can be vibrated
simultaneously is limited. This limit is determined by the maximum available current drain from the
PlayStation. When using the vibration feature, the following rules should be followed.

The actuators should be operated so that the total current drain does not exceed 60 units. For actuator
2, any value other than "0x00" is interpreted as "ON". This restriction does not apply if no Multi Tap is
used.

The current drain for each of the actuator types is given below.

Table 13-19: Actuator Current Drain

Model Actuator type Current drain

SCPH-1150 Actuator 1 10 units
SCPH-1200 Actuator 1 10 units
SCPH-1200 Actuator 2 20 units

If the total current drain of an actuator exceeds 60 units, a limiter in the library is activated to prevent
that actuator from operating.

3) Algorithm for restricting actuator operation as a function of current drain

Actuators are prioritized as follows.

1. By port number

2. By actuator number

Example 1

Controllers are connected to ports 00, 01, 02, 03, and a request is made to activate actuator 1 in all
controllers. Assume each actuator has a current drain of 20 units.

In this case, the total current drain will be obtained by summing the individual actuator current drains in
sequence, by port number. Since the total current drain exceeds 60 units, the actuator request for the
exceeding controller will be denied. Therefore, the actuators for ports 00, 01, 02 will be activated, but the
actuator on port 03 will not be activated.

Controller/Peripherals Library 13-23

Run-Time Library Overview

Example 2

Requests are received for:

Actuators 1, 2 for port 00 (10, 20 units)

Actuator 2 for port 01 (20 units)

Actuator 2 for port 02 (20 units)

Actuator 1 for port 03 (10 units)

The total current drain for ports 00, 01 is 50 units. The request for port 02 would exceed 60 units, so the
request for port 02 will be denied. However, if port 03 is included, the total current drain will not exceed 60
units and consequently, the request from port 03 will be granted.

Precautions when transmitting data to the controller during specific frames

Theoretically, communication with the controller should take place with each Vsync. However, this may not
happen when there are frequent, intensive interrupts, such as during streaming.

When PadChkVsync() is called during a frame when communication with the controller has occurred, a
value of 1 will be returned. A 0 will be returned if PadChkVsync() is called more than once and no
communication has taken place with the controller. The data stored in the transmit buffer will generally be
sent during the next Vsync. A return value of 0 from PadChkVsync() indicates that the data from the
previous frame was not sent to the controller. When data is transmitted to the controller only during
particular frames, the return value of PadChkVsync() should be checked to ensure that the data was
actually sent.

Calling PadInitDirect(), PadInitMtap(), and PadInitGun()

In libpad, controller connection state is maintained by the library. If the controller connection state is invalid,
the controller will not be recognized. Therefore, when a controller is used by both parent and child
processes, each process must call PadInitDirect() or PadInitMtap().

Gun connection state is also maintained by the library. If the gun connection state is invalid, gun position
information cannot be obtained. Therefore, when both parent and child processes use an ID=3 gun, for
example, each process must call PadInitGun().

13-24 Controller/Peripherals Library

Run-Time Library Overview

Run-Time Library Overview

Chapter 14:
Link Cable Library

Table of Contents

Overview 14-3
Library and Header Files 14-3

Driver and BIOS 14-3
Link Cable Driver 14-3
Events 14-3
Installing and Dismounting the Driver 14-3
Wait Callback 14-4
Termination Conditions for Synchronous Input/Output 14-4
Interrupt and Read/Write Functions 14-4
Unit-Number of Characters for Receiving 14-4
Error Processing 14-4
BIOS 14-4
Serial Controller 14-6
Communication Specifications 14-7
Default Settings 14-7
Control Line Transition 14-8

Programming Hints 14-9
Detecting the Other Playstation’s Connection (1) 14-9
Detecting the Other Playstation’s Connection (2) 14-9
Background Receiving by the Ring Buffer 14-9
Slow Speed of Asynchronous Write 14-9
Lightest Overhead Transmission 14-10
Unit-Number of Characters for Receiving with the Exception of One Character 14-10

14-2 Link Cable Library

Run-Time Library Overview

Link Cable Library 14-3

Run-Time Library Overview

Overview

The Link Cable library (libcomb) provides services for connecting PlayStations with a link cable, which is
used by many games, especially combat games.

Communication is performed by the read() and write() functions. Both functions support asynchronous
mode, in which events occur when processing is complete, and synchronous mode, in which the functions
are terminated when communication is complete. The maximum communication rate is 2M (2073600) bps.
The communication method is asynchronous serial communication. The communication rate can be
changed with the _comb_control() function.

Library and Header Files

To use the link cable library, you must link with the library file libcomb.lib .

Source files must include the header file libcomb.h .

Driver and BIOS

The link cable library consists of the link cable driver and the link cable BIOS.

Link Cable Driver

The link cable driver provides input/output functions in accordance with the standard C language.

Table 14-1: Link Cable Driver

Item Contents

Device name sio
Block size 1,2,4,8 bytes

Asynchronous write is a 1 byte unit
Asynchronous mode Specified in the O_NOWAIT macro on opening

Events

The following events occur with the input/output of the driver.

EvSpIOEW and EvSpIOER occur after sending asynchronous input/output requirements. EvSpERROR
occurs in both synchronous reading and asynchronous reading.

Table 14-2: Events

Cause descriptor Event type Contents

HwSIO EvSpIOEW Completion of asynchronous writing
EvSpIOER Completion of asynchronous reading
EvSpERROR Error occurrence related to receiving
EvSpTIMOUT Timeout in synchronous reading/writing

Installing and Dismounting the Driver

To install the link cable driver, call AddCOMB(). To remove it, call DelCOMB(). Opening the sio device
without installing the driver will cause an error.

14-4 Link Cable Library

Run-Time Library Overview

Wait Callback

During the processing of synchronous reading/writing of the preceding data a test software loop of the
serial controller status is executed. The Wait callback function is called during this loop. The callback
function is not registered in the default state.

The func function can be made into a callback function by means of _comb_control (4,0,func). This function
must meet the following specifications. Also, the callback function registration can be cancelled by
_comb_control(4,0,NULL).

Syntax long func (long spec, unsigned long count)
Argument spec 1:during sychronous read 2:during synchronous write

count current location of internal counter
Return Value Returns 0 when the wait loop is timed out and

returns 1 when the wait continues

Termination Conditions for Synchronous Input/Output

Synchronous read terminates when the specified number of characters can be received. However, it can
also terminate when a parity overrun frame receiving error is detected or when the wait callback function
returns a prescribed value. In either case a unit-number of receiving characters is returned.

Synchronous write terminates when the specified number of characters can be transmitted. However, it
can also terminate when the wait callback function returns a prescribed value.

Interrupt and Read/Write Functions

Most of the functions in the link cable library are designed never to have entered the critical section and it is
possible for them to be called within the event handler. However, since operation using single thread is
presupposed, perfect operation in a multi-thread environment is not guaranteed.

Although there is no problem when the existing PlayStation library is operated by a single thread, the library
driver’s operation cannot be guaranteed when the original thread control is being carried out.

Unit-Number of Characters for Receiving

PlayStation is equipped with an 8 bit receiving buffer and the receiving interrupt can be set to occur when
1,2,4 or 8 bytes are received when using in the asynchronous read package.

Also, this is used as a unit-number of characters for performing the handshake by means of DSR/DTR in
synchronous communication. However, since operation with 1 byte units is presupposed from the
standpoint of the nature of the communication interrupt when packaging asynchronous write, this
parameter must be set to 1.

Error Processing

When detecting each overrun parity frame receiving error during asynchronous input/output,
_comb_control(2,3,0) will cancel the asynchronous read will then issue the next EvSpERROR event.

There are limitations to the functions which can be used within the event handler and due to critical section,
other processes are blocked. Therefore, only processes which are completed in extremely short periods of
time, such as flag setting are carried out in the event handler. Error processing itself must take place in the
main process.

BIOS

The link cable BIOS provides precise driver control and a function which obtains information which cannot
be covered by standard C language functions. The interface function is _comb_control(). BIOS will work
without installing the driver.

Link Cable Library 14-5

Run-Time Library Overview

Following is the explanation of the _comb_control() function.

Syntax long _comb_control(unsigned long cmd, unsigned long arg,
unsigned long param)

Arguments cmd command
arg subcommand
param argument

Table 14-3: Command Summary

cmd arg Function

0 0 Returns the serial controller status (*1)
0 1 Returns the control line status (*2)
0 2 Returns the communication mode (*3)
0 3 Returns the communication rate by bps
0 4 Returns the "unit-number of characters for receiving”
0 5 Returns the amount of remaining data (bytes) from asynchronous

input/output during processing
If the param is 0 it is asynchronous write, if 1 it is asynchronous
read

0 6 Returns an asynchronous input/output request whether it
registered or not
If it has been registered, it will return 1. Others will return 0.
If the param is 0, it is asynchronous write, if 1 it is asynchronous
read

1 0 System reserved
1 1 Sets the value of param as the control line status (*2)
1 2 (Reserved)
1 3 Sets the value of param as the communication rate by bps
1 4 Sets the value of param as the "unit-number of characters for

receiving"

2 0 Resets the serial controller
Controller status, communication mode and communication
speed are saved

2 1 Clears the bits related to the driver status error. Includes a
function which indicates the completion of the interrupt
processing to the driver

2 2 Cancels the asynchronous writing
2 3 Cancels the asynchronous reading

3 0 When param is 1 RTS is made 1
When param is 0, RTS is made 0

3 1 If (CTS==1) 1 is returned, the others return 0

4 0 The param value is considered to be the pointer to the function
and is registered as the pointer to the wait callback function
The callback function pointer values up to that point are returned

(*1) Table 14-5 Driver Status

(*2) Table 14-6 Control Line Status

(*3) Table 14-7 Communication Mode

14-6 Link Cable Library

Run-Time Library Overview

Table 14-4: Driver Status

bit Contents

31-10 Undefined
9 1: Interrupt is ON
8 1: CTS is ON
7 1: DSR is ON
6 Undefined
5 1: Frame error occurrence
4 1: Overrun error occurrence
3 1: Parity error occurrence
2 1: No sending data
1 1: Possible to read the receiving data
0 1: Possible to write the sending data

Table 14-5: Control Line Status

bit Contents

31-2 Undefined
1 1: RTS is ON
0 1: DTR is ON

Table 14-6: Communication Mode

bit Contents

31-8 Undefined
7,6 Stop bit length

01:1
10:1.5
11:2

5 Parity check(2) 1: odd number 0: even number
4 Parity check(1) 1: enabled
3,2 Character length

00:5 bits
01:6
10:7
11:8

1 1 at all times
0 0 at all times

Serial Controller

The device that drives the link cable connector is a serial controller that supports asynchronous
communication. It has a 1 byte transmission buffer and an 8 byte receiving buffer. It has two sets of
control lines: DTR/DSR and RTS/CTS. Both are used for synchronous read()/write().

Table 14-7: Control Line

Transmission Receiving Receiving Transmission
Name Name Function Interrupt

DTR DSR Unusable during None
communication

Link Cable Library 14-7

Run-Time Library Overview

RTS CTS Receiving functions None
automatically halt
when OFF

Communication Specifications

Communication specifications can be selected from the following settings:

Table 14-8: Communication Specifications

Item Setting Value

Character Length 8 bits
Stop Bit 1 bit
Parity Check None
Communication Rate 1~2073600bps (2073600 divisor only)

Default Settings

The initial settings carried out in the link cable driver installation are:

Table 14-9: Default Settings

Items Values

Character length 8 bits
Stop bit 2 bits
Parity check Disabled
Communication rate 9600 bps

14-8 Link Cable Library

Run-Time Library Overview

Control Line Transition

The driver operates DTR (DSR for receiving) and RTS (CTS for receiving) as follows:

Table 14-10: Control Line Transition

Driver Operation DTR RTS

Power On (No other PlayStation or other PlayStation
power supply off) 1 1
(Other PlayStation present, driver not initialized) 0 0

Driver Initialization
AddCOMB(): 0 0

Synchronous Write
open (:sio”, O_WRONLY); - -
write(...); - -
write completion - -
close(); - -

Synchronous Read
open (“sio”, O_RDONLY); - -
read (...) - 1
read completion - 0
close(); - -

Asynchronous Write
open(“sio”,O_WRONLY/NOWAIT) - -
write (...); - -
transmission interrupt occurrence - -
transmission interrupt completion - -
write completion - -
close(); - -

Asynchronous Read
open(“sio”, O_RDONLY/O_NOWAIT); - -
read(...); - 1
Received interrupt occurrence - 1
Received interrupt completion - 1
Read completion - 0
close(); - -

Link Cable Library 14-9

Run-Time Library Overview

Programming Hints

Detecting the Other Playstation’s Connection (1)

When the link cable is not connected or when it is connected, but the other PlayStation has no power, both
the DSR and CTS become 1. However, if the link cable is connected and the other PlayStation has power,
both DSR/CTS become 0 and this does not change even after the Driver has been installed according to
AddCOMB. In this library, since no internal operation is carried out as long as the DSR/CTS signal does not
issue a read function, there is a method which by provisionally making either DTR or RTS 1 in the
iniitialization process immediately after AddCOMB execution provides notification that the other PlayStation
has completed communication preparations. By enabling the other PlayStation to perform the same
process, both sides can confirm the completion of each other’s communication preparations. However, in
order to prevent influencing future read/write functions when using RTS, it must be returned to 0.

Detecting the Other Playstation’s Connection (2)

When the link cable is disconnected during communication, or when the power to the other PlayStation is
turned off, a detection algorithm which establishes a time restriction is necessary to detect the occurrence
of an unusual state in the other PlayStation. There is a simpler detection method which uses wait callback
to constantly monitor the other PlayStation’s responses and infers the status of the other PlayStation by
means of the existence of a response or on its speed.

However, this information alone is insufficient to determine whether the abnormal status of the other
PlayStation results from a lack of connection or from a communication error. In order to search for a more
detailed status when that status has not improved even after exhausting all communication error
countermeasures such as performing the transfer again, a process to determine that the problem is a lack
of connection becomes necessary. Either way, since there is no definitive way to detect the connection
with the other PlayStation, a time restriction-based detection algorithm becomes necessary.

Background Receiving by the Ring Buffer

The read function can be executed in the critical section. Therefore, by calling the read function in the
EvSpIOER event handler the next asynchronous receiving request can be registered to the driver. The ring
buffer background receiving can be easily carried out by operating the receiving buffer pointer provided in
the read function.

Since the write function can also be carried out in the critical section, it is possible to package processing
such as the retransmitted request issuance with the above-mentioned ring buffer operation code by testing
the received data contents.

Slow Speed of Asynchronous Write

Asynchronous transmission carries the highest load in this library and driver operation. If receiving is not
given priority over transmission a receiving error such as an overrun can occur and this is generally
attributable to a decrease in efficiency. Also, in principle it is unavoidable that the efficiency of asynchronous
communication is lower when compared to synchronous communication.

From the above four combinations (synchronous read/write and asynchronous read/write), asynchronous
write puts the heaviest load on the CPU.

Also, because asynchronous write exhibits performance at a lower baud rate, normal operation cannot be
expected for transmissions which exceed 57600bps in actual practice.

14-10 Link Cable Library

Run-Time Library Overview

Lightest Overhead Transmission

The data which should be transmitted is divided into 8 character length packets, scattered suitably within
the code and transmitted by the synchronous write. This transmission format has the lightest load on the
CPU. Of course, since each write function should conclude within a definite time period, the maximum
waiting time is set by the time out callback function for all write functions. When the time limit is reached the
transmission will be interrupted. Since the transmission end character number for the point at which the
interrupt occurred is obtained as the return value, the pointer which shows the transmission data provided
to the next write function revises the value to the original.

Unit-Number of Characters for Receiving with the Exception of One Character

When an asynchronous read request is issued as the value of the unit-number of characters for receiving
except for one character, data which does not satisfy the number of characters cannot detect the received
status driver. Since this status connects to deadlock depending on the transmission-side activity, it is
necessary to package the time out processing at the application level.

Run-Time Library Overview

Chapter 15:
Extended Sound Library

Table of Contents

Overview 15-3
Library and Header Files 15-3

Score Data 15-3
SEQ Data Format 15-3
SEP (Sequence Package) Data Format 15-4

MIDI Support 15-5
Setting VAB Attribute Data Using Control Change 15-5
Using Control Changes to Set Repeating Loops within Music 15-6
Marking Function Using Control Changes 15-7

Sound Data 15-7
VAG Format 15-7
VAB Format 15-7

Function Execution Sequence 15-9

15-2 Extended Sound Library

Run-Time Library Overview

Extended Sound Library 15-3

Run-Time Library Overview

Overview

The Extended Sound library (libsnd) provides services that convert sound data so that it can be used by the
PlayStation. It can work with files created by the dedicated PlayStation Sound Artist Tool.

Libsnd provides functions for:

• Accessing VAB (sound source) data.
• Activating and terminating the sound system.
• Handling music score (SEQ) data.
• Producing single sound sound effects, rather than musical sound effects.
• Setting the common attributes of each SPU voice.
• Changing the attribute table in VAB data at run-time and applying effects to the allocated voice after

KeyOn.

Note: Libsnd is designed to use MIDI data. For sound effects and music which do not use MIDI data, use
of libspu is recommended since this is not only a smaller library, but also uses less overhead.

Library and Header Files

To use the extended sound library, your application must link with the file libsnd.lib .

Your source code must include the header file libsnd.h .

Score Data

In the extended sound library, music data is defined as SEQ data format and SEP data format.

SEQ Data Format

SEQ is a format 1 SMF (Standard Midi File) converted for use with the PlayStation. The MIDI data structure
track/chunk data is merged with the time order in SEQ format.

A single sound expression is the same as the SMF standard, that is {status (1 byte), data (number of bytes
fixed according to status), delta time (variable length expression, max 4 Bytes)}.

Figure 15–1: SEQ data format

Sound ID (4 bytes)
Version number (4 bytes)
Quarter-note resolution (2

bytes)
Tempo (3 bytes)
Rhythm (2 bytes)

Data

File end (3 bytes)

In SEQ, use running status and all note off messages should be note on messages with velocity 0. SEQ
format also supports the following status data used by MIDI.

15-4 Extended Sound Library

Run-Time Library Overview

• Note on
• Note off
• Program change
• Pitch bend

The list below is for control change:

• Bank Change (0)
• Data entry (6)
• Main volume (7)
• Panpot (10)
• Expression (11)
• Damper pedal (64)
• External effect depth (91)
• Nrpn data (98, 99)
• Rpn data (100, 101)
• Reset all controllers (121)

Note: Control numbers are printed inside parentheses ()

SEP (Sequence Package) Data Format

A SEP is a package containing multiple SEQ data files. SEPs enable multiple SEQ data files to be managed
as one file. A maximum of 16 SEQ data files can be linked.

SEPs can be accessed by specifying the ID number returned when the SEP is opened, along with the SEQ
number of the SEQ data to be accessed. See the Run-time Library 4.0/Reference for details of access-
related functions.

The SEP data format is illustrated below.

Figure 15–2: SEP data format

Sound ID (4 bytes)
Version number (2 bytes)

SEQ number (2 bytes) = 0
Quarter-note resolution (2 bytes)

Tempo (3 bytes)
Rhythm (2 bytes)

 Data size (incl SEQ end) (4 bytes)

Data

SEQ end (3 bytes)

SEQ number (2 bytes) = 1
Quarter-note resolution (2 bytes)

Tempo (3 bytes)
Rhythm (2 bytes)

Data size (incl SEQ end) (4 bytes)

Data

SEQ end (3 bytes)
…(up to 16 SEQs)

Extended Sound Library 15-5

Run-Time Library Overview

MIDI Support

Setting VAB Attribute Data Using Control Change

NRPN data that enables the setting of VAB attribute data is defined using the MIDI standard Control
Change message for the NRPN.

When using a sequencer to create an SMF file for defining VAB attributes, the following values should be
sent.

bnH 99 data1 (NRPN MSB)
bnH 98 data2 (NRPN LSB)
bnH 06 data3 (Data Entry)

The contents of data1, data2, and data3 are described below.

• The tone numbers range from 0 to 15. To change the attributes of all tones, specify 16.
• The hardware specifications state that some coefficients, such as reverb depth, must be set as a group

for the entire SPU. Consequently, it is not possible to set the reverb type or depth, feedback amount,
and the like for each tone or each MIDI channel.

• Reverb can be set only as on or off for each voice (i.e., each waveform). To make these settings, check
the reverb switches shown on the SoundDelicatessen ADSR setting screen. You can also use the
NRPN Mode setting to change from MIDI sequence in real-time. The ‘x’ in the right column indicates
that these attributes are not currently supported.

Table 15-1: Data1-Data3 Contents

ATTRIBUTE Data1 (CC99)Data2 (CC98) Data3
(CC06)

Priority Tone Number0 0~127
Mode ” 1 0~4 (*)
Limit low ” 2 0~127
Limit high ” 3 ”
ADSR (AR-L) ” 4 ”
ADSR (AR-E) ” 5 ”
ADSR (DR) ” 6 ”
ADSR (SL) ” 7 ”
ADSR (SR-L) ” 8 ”
ADSR (SR-E) ” 9 ”
ADSR (RR-L) ” 10 ”
ADSR (RR-E) ” 11 ”
ADSR (SR-±) ” 12 0~64: +

65~127:–
Vibrate time ” 13 0~255(**)
Portamento depth ” 14 0~127(**)
Reverb type 16 15 0~9 (***)
Reverb depth 16 16 0~127
Echo feedback 16 17 ”
Echo delay time 16 18 ”
Delay delay time 16 19 ”
Vibrate depth Tone Number21 0~127(**)
Portamento time ” 22 0~255(**)

15-6 Extended Sound Library

Run-Time Library Overview

(*) Mode Type
(**) Not currently supported
(***) Reverb Type (Refer to Sound Delicatessen DSP)

Table 15-2: Data3 Mode Type

Number Mode

0 Off
1 Vibrate
2 Portamento
3 1&2 (Portamento and Vibrate on)
4 Reverb

Table 15-3: Data3 Reverb Type (See Also Sound Delicatessen DSP)

Number Reverb Type

0 Off
1 Room
2 Studio A
3 Studio B
4 Studio C
5 Hall
6 Space
7 Echo
8 Delay
9 Pipe

Using Control Changes to Set Repeating Loops within Music

NRPN data may be used to implement a repeat function for sections within music.

The symbol "||:" identifies Loop1 and ":||" identifies Loop2. Although the repeat function can be used any
number of times within one piece of music, it is not possible to embed a loop within a loop, such as (Loop1
... (Loop1' ... Loop2') ... Loop2).

Table 15-4: Looping Using Control Changes

ATTRIBUTE Data1 (CC99)Data2 (CC06)

Loop1(start) 20 0~127 (***)
Loop2(end) 30

(***) For continuous looping, set 127(0x7f).

Note: Depending on the sequence, when setting a repeat loop to the same Delta Time it is possible that
the order will shift when it is modified to SMF even if it was input in regular sequence. Since this can cause
the data to become invalid, please do not set repeat loops to the same Delta Time.

Also, values become valid from the KeyOn immediately after the Data Entry is read in VAB attribute data
settings

Extended Sound Library 15-7

Run-Time Library Overview

Marking Function Using Control Changes

NRPN data may also be used to implement a function for marking places within a song. When a library
function detects one of these marks, it calls the function registered for the mark. The marking format is
shown below.

Table 15-5: Marking via Control Changes

Attribute Data1 (CC99)Data2 (CC06)

Mark 40 Any value from 0~127
(Passed to callback function)

Note: Please set the reverb and repeat at only one point in the music score data. There is no need to set
them in each channel (track).

Sound Data

Two data formats are used to define sound data, VAG format and VAB format.

VAG Format

This is a waveform data format for ADPCM-encoded data of sampled sounds, such as piano sounds and
explosions.

VAB Format

The VAB file format is designed to manage multiple VAG files as a single group. It is a sound processing
format that is handled as a single file at runtime.

A VAB file contains all of the sounds, sound effects, and other sound-related data actually used in a scene.
Hierarchical management is used to support multi-timbral (multi-sampling) functions.

Each VAB file is equivalent to a MIDI bank. Each VAB file may contain up to 128 programs, which are
equivalent to MIDI patch changes. Each of these programs can contain up to 16 tone lists. A tone list is a
set of attributes for a specific VAG. Also, each VAB file can contain up to 254 VAG files.

Since it is possible for multiple tone lists to reference the same waveform, users are able to set different
playback parameters for the same waveform.

A VAB format file is organized as follows:

Figure 15–3: VAB format and VAB header

VAB File

Program Attribute Table
(128 Programs)

Tone Attribute Table (128
x 16 VAG Header List)

VAG Data Body
(254 VAG Data)

15-8 Extended Sound Library

Run-Time Library Overview

The structure of a VAB header is as follows. It is possible to set each attribute dynamically using this
structure at the time of execution. Also, the VAB (Bank) editor can edit all values included in the VAB data
format header and can confirm the local memory usage by using the bank sound source at execution.

VAB Header

struct VabHdr {
long form; /*always “VABp”*/
long ver; /*format version number*/
long id; /*bank ID*/
unsigned long fsize; /*file size*/
unsigned short reserved0; /*system reserved*/
unsigned short ps; /*total number of programs in

this bank*/
unsigned short ts; /*total number of effective

tones*/
unsigned short vs; /*number of waveforms (VAG)*/
unsigned char mvol; /*master volume*/
unsigned char pan; /*master pan*/
unsigned char attr1; /*bank attribute*/
unsigned char attr2; /*bank attribute*/
unsigned long reserved1; /*system reserved*/

};

Program Attributes

struct ProgAtr {
unsigned char tones; /*number of effective tones which

compose the program*/
unsigned char mvol; /*program volume*/
unsigned char prior; /*program priority*/
unsigned char mode; /*program mode*/
unsigned char mpan; /*program pan*/
char reserved0; /*system reserved*/
short attr; /*program attribute*/
unsigned long reserved1; /*system reserved*/
unsigned long reserved2; /*system reserved*/
};

Tone Attributes

struct VagAtr {
unsigned char prior; /*tone priority*/
unsigned char mode; /*tone mode*/
unsigned char vol; /*tone volume*/
unsigned char pan; /*tone pan*/
unsigned char center; /*center note (0~127*/
unsigned char shift; /*pitch correction (0~127,cent

units)*/
unsigned char min; /*minimum note limit (0~127)*/
unsigned char max; /*maximum note limit (0~127,

provided min < max)*/
unsigned char vibW; /*vibrato width (1/128 rate,0~127)*/
unsigned char vibT; /*1 cycle time of vibrato (tick

units)*/
unsigned char porW; /*portamento width (1/128 rate,

0~127)*/
unsigned char porT; /*portamento holding time (tick

units)*/
unsigned char pbmin; /*pitch bend (-0~127, 127 = 1

octave)*/
unsigned char pbmax; /*pitch bend (+0~127, 127 = 1

octave)*/
unsigned char reserved1; /*system reserved*/

Extended Sound Library 15-9

Run-Time Library Overview

unsigned char reserved2; /*system reserved*
unsigned short adsr1; /*ADSR1*/
unsigned short adsr2; /*ADSR2*/
short prog; /*parent program*/
short vag; /*waveform (VAG) used*/
short reserved[4]; /*system reserved*/
};

Function Execution Sequence

When using sound library functions, execute the functions in the following order. For details, see sample
program.

1) Initialization

Initialize with the SsInit() function. Use the SsSetTableSize() function to maintain the SEQ attribute data
area.

2) Tick Mode Setting

Set tick mode with the SsSetTickMode() function.

3) Opening Data

• When using VAB data: execute SsVabOpenHead()→SsVabTransBody(),SsVabTransCompleted()
• When using SEQ data execute SsSeqOpen()
• When using SEP data execute SsSepOpen().

4) Starting the Sound System

Start the sound system by executing the SsStart() function. It is acceptable to execute (3) Opening
Data after the SsStart() function. Please note that playback of SEQ data is dependent on proper
callback timing. The tempo of the music may become uneven due to other callback processing
(example: CD reading) unless the following methods are followed:

Case A: not using VSyncCallback()

(1) Define TICK mode as SS_TICK60

SsSetTickMode (SS_TICK60);

(2) Use SsStart2() instead of SsStart()

/*SsStart(); /* tempo changes */

 SsStart2();

Case B: using VSyncCallback()

(1) Define TICK mode as SS_NOTICK

SsSetTickMode (SS_NOTICK);

(2) Call SsSeqCalledTByT() set within the function VSyncCallback().

int
foo (void)
{

...
SsSeqCalledTByT();
...

}

15-10 Extended Sound Library

Run-Time Library Overview

Set the processing load corresponding to the position of SsSeqCalledTByT() in the
function.

main()
{

...
VSyncCallback (foo);
...

}

Either solution will currently work for this problem, but from this point on, it would be better to use a
TICK mode less than SS_TICK120.

5) Required Processing

Set main volume. Execute required processing. The CD(DA/XA) stereo/monoaural settings are made
using the libcd function CdMix(); SPU (SEQ, SEP, VAB, VAG) stereo/monaural settings are made using
the libsnd functions SsSetMono() and SsSetStereo().

6) Closing Data

• When using VAB data execute SsVabClose()
• When using SEQ data execute SsSeqClose()
• When using SEP data execute SsSepClose()

7) Halting the Sound System

Halt the sound system by executing the SsEnd() function.

8) Terminating the Sound System

End the sound system by executing the SsQuit() function.

Run-Time Library Overview

Chapter 16:
Basic Sound Library

Table of Contents

Overview 16-3
Library and Header Files 16-3

VAG Format 16-3
VAG Format 16-3

Voice Audio Source Control Function 16-4

Noise Audio Source Control Function 16-4

LFO Control Functions in Intervals 16-5

Reverb Control Function 16-5

Function for Optional Data Transfer to Sound Buffer 16-6

Interrupt Request Function for Sound Buffer Access 16-8

Sound Buffer Memory Management 16-8

Function for Mixing CD and External Digital Input 16-8

Transferring Data Decoded by SPU to Main Memory 16-9

Initializing, Starting and Stopping SPU Processing 16-9

SPU Streaming Library 16-9
Overview 16-9
Basic Operations 16-9
Waveform Data Processing 16-10
Four States in the SPU Streaming Library 16-10
Callback Functions 16-11
Stream Processing 16-12
Actual Flow of Stream Processing 16-13
Completion 16-16

Basic Sound Library and Extended Sound Library Common Uses 16-16
Initialization 16-16
Sequence Data 16-16
Sound Generation/libsnd Voice Manager Function 16-17
Transfer to the Wave Pattern Data Sound Buffer 16-17
Sound Buffer Memory Control and Reverb 16-17

16-2 Basic Sound Library

Run-Time Library Overview

Basic Sound Library 16-3

Run-Time Library Overview

Overview

The basic sound library (libspu) directly controls the PlayStation sound play processor (SPU). It controls the
lower levels of the extended sound library (libsnd), although individual functions for operations such as
transferring other types of data in addition to music (for example, texture data, etc.) to the sound buffer are
provided.

This library functions only as a library for the SPU, so it does not have time control functions. These
functions need to be controlled by a separately provided kernel library such as libapi.

It is necessary to insert the SPU processing unit of at least 1/44100 seconds of space in order to perform
function calling for the setting of identical functions.

Library and Header Files

To use the basic sound library, your application must link with the file libspu.lib .

Your source code must include the header file libspu.h .

VAG Format

VAG Format

VAGs are compressed audio data arranged in 16 byte blocks. Keep in mind that AIFF2VAG for the PC
creates files in an Intel or little endian format and AIFF2VAG the Mac creates files in a Motorola or big
endian format.

Header

All VAGs have a 48 byte header which must be removed for playback. This header should not be removed
before converting VAGs to VABs on the Mac or PC; otherwise, improper conversion will occur.

• ID - 4 bytes. ‘VAGp’, identifies the file as a VAG.

• Version - 4 bytes. Identifies which version of AIFF2VAG created the file.

Mac converters v1.3 ‘00000002’
v1.6+ ‘00000003’

PC converters -v1.8 ‘00000000’
v2.0+ ‘00000020’

• System reserved - 4 bytes.

• Data size - 4 bytes. The data size of the file in bytes.

• Sampling frequency - 4 bytes. The sampling frequency of the AIFF. Can be used to determine the pitch
at which to play the VAG. pitch = (sampling frequency <<12)/44100L Ex: 44.1kHz=0x1000
22.05kHz=0x800 etc.

• System reserved - 12 bytes.

• Name - 16 bytes. File name, used by Sound Delicatessen.

Intro

All VAGs must have a lead-in of 16 bytes of zero data. This data initializes the SPU in order to prevent
clipping noises.

16-4 Basic Sound Library

Run-Time Library Overview

VAG Body

The VAG format and compression method is Sony proprietary information. The body of the VAG will be
compressed approximately 3.5-1 by AIFF2VAG.

SPU IRQ Clear Block

One-shot VAGs will be created with an additional 16-byte block attached to the end. The block is used to
prevent unnecessary SPU interrupts or SPU free-run. The block reads as follows: “00077777 77777777
77777777 77777777” or “00070000 00000000 00000000 00000000.” Looping VAGs do not contain this
block.

If the SPU IRQ is not being used, this block can be removed. Currently (lib 3.6) the functions which use the
SPU IRQ are as follows: SpuGetIRQ(), SpuGetIRQAddr(), SpuSetIRQ, SpuSetIRQAddr(), and
SpuSetIRQCallback(). The SpuStreaming library [all calls SpuSt…()] also uses the SPU IRQ.

If none of these functions will be used in the code, the SPU IRQ clear byte block at the end of one-shot
VAGs can be removed. This frees up SPU RAM (up to 4K in a single VAB), slightly reduces CD load time
(up to 1/75 sec at double speed for a single VAB), and very slightly reduces SPU load time (while the SPU
DMA is slow, it is much faster than the CD).

Be sure to change the data size in the VAG header to reflect the fact that these bytes have been removed
BEFORE building VABs with truncated VAGs.

Also, keep in mind that your SPU IRQ safety net has been removed with the removal of the clear bytes. Use
this information wisely.

Voice Audio Source Control Function

The functions which can be controlled in the basic sound library are indicated below. The following
attributes may be set individually for 24 ADPCM audio sources (hereafter referred to simply as ‘voice’).

• Sound volume (can set L/R independently)
• Pitch
• Address of waveform data in sound buffer
• Envelope (ADSR)
• Loop point

These attributes, as well as key on/key off, are set for each voice. Key on/key off can also be set
independently for each of 24 voices.

These attributes may be changed while key on is in effect and sound is being generated. So, it is possible
to continuously vary the sound interval during sound generation and to repeatedly generate sound while
changing the loop point of waveform data having a loop point.

Noise Audio Source Control Function

The SPU has one noise generator. This noise generator may be set and used for each voice instead of
sound buffer waveform data. Use SpuSetNoiseVoice() to determine which voices will playback the noise
generator. It has effects such as envelope, and it can produce a noise sound effect by varying the auditory
sound interval (noise clock) while sound is being generated. SpuSetNoiseClock() will be used to change the
sound interval. Also, SpuGetNoiseClock() will return the value of the interval and SpuGetNoiseVoice() will
return the voices currently using the noise generator.

Basic Sound Library 16-5

Run-Time Library Overview

LFO Control Functions in Intervals

By using adjoining voices, the SPU can produce an LFO (Low Frequency Oscillator) effect in an interval.
Use SpuSetPitchLFOVoice() to create this effect.

This may be expressed by the equation below. For LFO control, be aware that two voices are used to
generate one tone.

NewPitch(n) = (1 + V(n-1)) * Pitch(n)

Table 16-1: LFO Control Expression Format

NewPitch(n) Voice (n) final pitch
V(n-1) Voice (n-1) volume (changed according to time)
Pitch(n) Pitch originally set for voice (n)

Reverb Control Function

Reverb is provided using various types of templates. These templates have many variable parameters, and
effects may be varied by adjusting these parameters.

Reverb uses the sound buffer as its work area with the offset (starting) address varying according to each
individual parameter. These parameters are listed in the function SpuSetReverbModeParam(). Since this is
also prepared for use as a template, the area before the offset (starting) address may be used as an actual
waveform data area.

Reverb may only be set to on or off for all voices; that is, only one type of reverb can be active at any given
time. However, individual voices may be set using SpuSetReverbVoice(). SpuGetReverbVoice() will return
which voices currently have reverb set. Reverb may also be applied to CD input and external digital input by
using SpuSetCommonAttr() and setting the members SpuCommonAttr.cd.reverb or
SpuCommon.ext.reverb.

Until the reverb effect is actually required:

Do not set the depth for SpuSetReverbModeParam() or SpuSetReverbDepth() or it will be necessary to
forcibly clear the reverb work area in either SpuSetReverbModeParam() or SpuClearReverbWorkArea().
Otherwise, noise will be generated.

If you intend to use reverb, set the mode well in advance, not just before use. When you set the mode, the
reverb depth will go to 0.

The order in which you perform reverb setup should be:

SpuSetReverb() followed by either

a) SpuSetReverbModeParam (specifying Mode/Feedback/Delay)

SpuSetReverbModeParam (specifying Depth)

or

b) SpuSetReverbModeParam (specifying Mode/Feedback/Delay)

SpuSetReverbDepth (specifying Depth)

In the case of a. above, the value of the member of the structure passed as an argument of
SpuSetReverbModeParam must be changed. In the case of b. above, the structure used by
SpuSetReverbModeParam may be used as is.

In order for the SPU memory management to properly account for reverb, the following relationships should
be applied:

16-6 Basic Sound Library

Run-Time Library Overview

1) Cases in which reverb work area has been reserved with SpuReserveReverbWorkArea (SpuOn)

SpuMalloc/SpuMallocWithStartAddr. This method should be used to save an area of SPU RAM for
future reverb use.

Depending on the mode, you can allocate an area of size (0x7ffff - work area size), starting from
address 0x01010.

2) Cases in which a work area has not been reserved with SpuReserveReverbWorkArea (SpuOff)

SpuMalloc()/SpuMallocWithStartAddr()

Area can be allocated in the entire sound buffer area, addresses 0x01010 to 0x7ffff, unless
SpuSetReverb(SPU_ON) has been called. In this case, even if reverb mode is SPU_REV_MODE_OFF,
128 bytes will be used as a reverb work area.

SpuSetReverb()

If an area with a size corresponding to the mode being used has been allocated as the reverb work
area in another area with SpuMalloc/SpuMallocWithStartAddr, then SpuSetReverb (SpuOn) will be
invalid

3) Regardless of the current reverb work area allocation, when a change is to be made to reverb mode,
SpuSetReverbModeParam analyzes whether or not it can allocate the area required as a work area,
based on information from the sound buffer memory management mechanisms, and if possible
reserves the area at that time. If the area cannot be allocated, SpuSetReverbModeParam returns
without reserving the area.

4) If you execute SpuMalloc/SpuMallocWithStartAddr when there is no reverb work area reserved by
SpuReserveReverbWorkArea, and afterward attempt to reserve the reverb work area again with
SpuReserveReverbWorkArea, it analyzes whether or not it can acquire a reverb work area of the size
needed by the current reverb mode, based on information from the sound buffer memory management
mechanisms, and reserves that region at that time if that area can be allocated. If that area cannot be
allocated, it returns without reserving any work area.

5) The size of the reverb work area depends on the reverb mode. The only time that the reverb work area
size changes is when you set the mode with SpuSetReverbModeParam.

The behavior of SpuMalloc/SpuMallocWithStartAddr, SpuReserveReverbWorkArea, and SpuSetReverb
change when the mode setting changes.

When exiting a program that uses reverb, you must do the following:

Basic Sound Library
#include <libspu.h>

SpuReverbAttr r_attr;
r_attr.mask = (SPU_REV_MODE);
r_attr.mode = SPU_REV_MODE_OFF;

SpuSetReverbModeParam (&r_attr);
SpuSetReverb (SPU_OFF); /*reverb off*/

Otherwise, noise may sometimes occur the next time the program is executed.

Function for Optional Data Transfer to Sound Buffer

Use the methods below when transferring waveform data from main memory to the sound buffer
(SpuWrite()) or when transferring waveform data from the sound buffer to the main memory (SpuRead()).

Basic Sound Library 16-7

Run-Time Library Overview

Use SpuSetTransferMode() to change modes. The default mode is DMA transfer; use
SpuGetTransferMode() to check transfer mode. SpuSetTransferStartAddr() must be called before writing or
reading SPU RAM. SpuGetTransferStartAddr() will return the set address.

• I/O transfer (Write-only)
• DMA transfer (Write/Read)

DMA transfer transfers asynchronously using the DMA controller, so the CPU is able to do other processing
during the transfer. The function SpuIsTransferCompleted() must be called after DMA transfer.

I/O transfer uses the CPU, so other processing cannot be performed during the transfer. You must select
DMA transfer if you are transferring data while continuing playback. Since I/O transfer blocks CPU
processing, SpuIsTransferCompleted() always returns “1”, and need not be called.

Note:Note:Note:Note: if CDInit() is not called before SpuInit(), waveform transfer completion may fail, especially when
SpuIsTransferCompleted(SPU_TRANSFER_WAIT).

DMA transfer is always used when transferring from the sound buffer to main memory, so it is not
necessary to set the transfer mode explicitly. However, the main memory address which stores transferred
data or receives data must be the address of a variable allocated for a large area, or the address of a
variable allocated to a loop area by malloc() or a similar function. In other words, it cannot be the address of
a stack region of a variable declared within a function (auto variable).

To clear an area in SPU RAM, use SpuWrite0(). Also, if transfer isdesired in steps, use SpuWritePartly().

Active memory management is not performed in the sound buffer. So, data transfer should avoid the areas
listed below. Data transferred to these areas cannot be used as waveform data.

• 0x00000 ~ 0x00fff -- SPU decoded data transfer region

• 0x01000 ~ 0x0100f -- System reserved region

• After the reverb work area offset (starting) address (described later).

Figure 16-1: Sound Buffer Memory Layout

SPU Decode 0x00000
Data Region �

 0x01000
SPU IRQ Clear Block
(System reserved) 0x01010

Waveform data
transferable region

 � Reverb offset address

Reverb
Work area �

 ... may vary according
 to reverb type

 0x7ffff

��
��
��
��
��
��
��

���
���
���
��
���
���
���

16-8 Basic Sound Library

Run-Time Library Overview

Interrupt Request Function for Sound Buffer Access

The sound buffer may be accessed for operations besides data transfer. The SPU is also able to access
the sound buffer at any time while decoding in order to output the transferred waveform data as sound.

This optional access to the sound buffer is performed by generating a hardware interrupt (interrupt request)
when access is made to a specific address. The specified address is set in SpuSetIRQAddr(). It is also
possible to specify a function to be called in response to this interrupt request by calling the function
SpuSetIRQCallback(). SpuSetIRQ() must also be called in order to enable or disable the IRQ. SpuGetIRQ()
will return whether or not the interrupt has been enabled and SpuGetIRQAddr() will return the interrupt
request address.

Sound Buffer Memory Management

The sound buffer memory management function provides a library with very limited functions. It manages
only the table containing occupied memory and reports only that information. Doing transfers to sound
buffer regions using this information makes possible simple sound buffer memory management. The
following functions manage SPU memory:

SpuInitMalloc() sets up the memory management table.

SpuFree() deletes the information from the designated area in the memory management table.

SpuMalloc() will allocate an area in SPU RAM.

SpuMallocWithStartAddr() will allocate an area in SPU RAM with a specific starting address.

Function for Mixing CD and External Digital Input

The SPU has the following two systems for external input.

• CD input
• External digital input

The sampling frequency of both is 44.1 kHz. Sound from these inputs and SPU output may be mixed
digitally. The input may also be assigned to reverb.

To set up the CD volume, use the following example:

Basic Sound Library (libspu)
#include <libspu.h>

SpuCommonAttr attr;

attr.mask = (SPU_COMMON_MVOLL | /* master volume (left) */
SPU_COMMON_MVOLR | /* master volume (right) */
SPU_COMMON_CDVOLL | /* CD input volume (left) */
SPU_COMMON_CDVOLR | /* CD input volume (right) */
SPU_COMMON_CDMIX); /* CD input on /off */

/* set master volume to mid-range */
attr.mvol.left = 0x1fff;
attr.mvol.right = 0x1fff;

/* set CD input volume to mid-range */
attr.cd.volume.left = 0x1fff;
attr.cd.volume.right = 0x1fff;

Basic Sound Library 16-9

Run-Time Library Overview

/* CD input ON */
attr.cd.mix = SPU_ON;

/* set attributes */
SpuSetCommonAttr (&attr);

Please note that calling SpuInit() resets the CD volume to zero. The proper order of initialization is CDInit(),
then SpuInit(), then use the above example to reset the CD volume.

Transferring Data Decoded by SPU to Main Memory

The SPU writes to the sound buffers starting 0x1000 bytes (0x800 short int) area 16 bits at a time (= 1
short int) at each clock (44.1 kHz) pulse. Data is written after CD input volume processing sound data and
after Voice 1 and Voice 3 envelope processing sound data. The individual sound buffers are each 0x400
bytes (0x200 short int) long and divided into the first half (0x200 bytes [0x100 short int]) and the second half
(0x200 bytes [0x100 short]). By deciding which buffer region to write to, it is possible to write a maximum of
100 samples (100 / 44100 = 0.0022 ... seconds) of data at one time. SpuReadDecodeData() will perform
this transfer.

Initializing, Starting and Stopping SPU Processing

• SpuInit() must be called prior to any other libspu functions.
• In no particular order: Data transfer to SPU RAM; Reverb setup; Set main volume, CD input, and

external input with SpuSetCommonAttr().
• Set Voice Attributes using SpuSetVoiceAttr().
• Key On voices using SpuSetKey() or SpuSetKeyOnWithAttr(); all main processing.
• SpuQuit() must be called to stop all SPU processing.
• SpuStart() must be called to restart SPU processing

SPU Streaming Library

Note:Note:Note:Note: The functions explained in this section are included in the basic sound library (libspu), and are
separate from the (libcd) streaming library

Overview

The SPU streaming library provides for playback of large-sized waveforms, which would otherwise overflow
the PlayStation SPU RAM.

The SPU originally played back only waveform data contained in SPU RAM; it could not play back
waveform data larger than 512 K.

Waveform data which is larger than the sound buffer can be played back by transferring the next section of
data to be played back to a designated area in SPU RAM continuously during playback..

Basic Operations

With the SPU streaming library, the use of the voice contained by SPU performs its own playback. The
playback performed by the voice itself is the same processing as the ordinary sound generation (Key on).

16-10 Basic Sound Library

Run-Time Library Overview

Waveform data used by the SPU streaming library is placed on main memory (a part of the data is sufficient
when starting the SPU streaming processing). The data used in the SPU streaming library is:

A VB file which contains only one VAG data.

In other words,

A VAG file which does not include the 48 byte header.

An area is allocated in SPU RAM for each voice used by the SPU streaming library. The SPU streaming
library allows the SPU to play back the waveform data contained in main memory via transfer to the
allocated area in SPU RAM continuously.

The area for each voice used by the SPU streaming library in SPU RAM is called a stream buffer. This
buffer is necessary for each voice used by the SPU streaming library. When the SPU streaming library uses
more than one voice, the size of every stream buffer and the pitch must be the same for all voices.

The series of processes in which the waveform data contained in main RAM is transferred to the stream
buffer continuously and played back by SPU is called a stream waveform.

The SPU streaming library can handle a maximum of 24 streams and 24 stream buffers, and all 24 voices
can be the voices used by the SPU streaming library.

Waveform Data Processing

The SPU streaming library can handle waveform data (VB data) larger than SPU RAM, and all parts of the
waveform data need not reside on main RAM at the start of the stream processing.

With the SPU streaming library, at any points in the processing, the waveform data at least half as large as
the stream buffer is necessary for each stream. When the transfer of the processed waveform data is
requested, by specifying the head address and the attributes of the necessary part of the waveform data,
the SPU streaming library is informed of the continuation of the stream processing.

The waveform data used is being partly rewritten at the time of transferring. Internal marks for the SPU
streaming library are being created in the waveform in main RAM. Since the waveform has been altered for
the SPU streaming library, it is recommended that sections of the waveform used by the SPU streaming
library be reloaded into main RAM from the CD before transfer to SPU RAM for a second time.

Four States in the SPU Streaming Library

There are four states in the stream processing by the SPU streaming library:

Idle

Streams are not processed in this state. In this state, transfer to the stream buffer cannot be performed.
Thus, the SPU streaming library puts no load on the PlayStation(R) system.

Also, the idle state follows the termination state..

Preparation

In order to eliminate time-lag of actual sound generation, some waveform data must be transferred into
SPU RAM before stream processing begins. The size of waveform data which must be transferred is half as
large as the stream buffer. This transfer must occur for all streams. This state indicates the transfer and the
end of the transfer. The end of the transfer can be detected by the preparation finished callback function.

Transfer

In this state, sound generation is actually performed for the designated voice. Requests for the preparation
state for other voices can be performed in this state, but the state does not change to preparation. The
preparation for these other voices is performed in the transfer state.

Basic Sound Library 16-11

Run-Time Library Overview

In this state the half of the stream buffer is processed, and the processing can be detected by the transfer
finished callback function explained later.

Termination

Termination is designated for all the streams, and processing returns to the idle state. In this state the
transfer is completed. Also, any requests for the next preparation or transfer are not accepted. Once the
state becomes idle, the next request for preparation is accepted.

Figure 16-2: Four States and their Transitional States

Idle Preparation Transfer Termination

Callback Functions

The SPU streaming library provides three types of the callback functions for the stream processing.

Each callback function is called with the same timing in the multiple streams. The requested stream can be
recognized by the argument of the callback function.

Preparation Finished Callback Function

This is the function called when the initial transfer is completed for the preparation state described above..

Transfer Finished Callback Function

This is the function called when the transfer of waveform data half as large as the stream buffer is
completed. In this function, the attributes for the next transfer are set. However, this function is not called at
the completion of the transfer in the preparation state.

Stream Finished Callback Function

This is the function called when the playback of the termination-designated stream is completed.

The attributes for the next transfer in each stream must be processed by the transfer finished callback
function. Also, if the start of the stream follows immediately after the preparation of the stream, the
attributes for the next transfer must be set in the preparation finished callback function.

Without these callback functions, the processing continues. However, since the arguments for the next
transfer in each stream must be set every time, the transfer finished callback function must be called
without fail. At the same time, the arguments for the next transfer must be set in the callback function.

16-12 Basic Sound Library

Run-Time Library Overview

 Figure 16-3: Four Callback Functions and Transitional States

[Idle]
SpuStTransfer (SPU_ST_PREPARE)

[Preparation] Preparation finished callback function

SpuStTransfer (SPU_ST_PLAY)

(Transfer to the stream buffer)

Transfer finished callback function
[Transfer]

(Transfer to the stream buffer)

Stream A
is completed

Transfer finished callback function

For the stream A
Stream finished callback function

(Transfer to the stream buffer)

Transfer finished callback function

Transfer finished callback functionLast stream
is completed

[Termination]

Stream finished callback function
[Idle]

(Transfer to the stream buffer)

Transfer finished callback function

(Transfer to the stream buffer)

Transfer finished callback function

(Transfer to the stream buffer)

Stream Processing

Stream Preparation and Start

As stated previously, all streams are processed at the same time. This means that all streams are
transferring data to the same half of the stream buffer and all streams are playing back from the other half
of the stream buffer. This can affect the way that new streams will be added.

Preparation for each stream is always performed in the first half of each corresponding stream buffer, and
waveform data is transferred to that part. Therefore, if the preparation for the stream is requested in the idle
state, it is processed promptly. On the other hand, if a new stream’s preparation is requested in the
transfer state, the preparation of the new stream must wait until the transfer of data for the other streams
into the first half of those stream buffers occurs. A lag time occurs until the processing for other streams
returns to the beginning of the first half of the stream buffers. The larger the size of the stream buffer, the
longer a potential lag time for this initial transfer of data for the new stream.

Each stream is actually started at the time of data transfer to the second half of the corresponding stream
buffer; playback of the data in the first half of the stream buffer can begin at this point. Therefore, if the
transfer to the second half of the stream buffer is requested during the preparation state, it is processed
promptly. On the other hand, if the transfer of data to the second half of a new stream buffer is requested

Basic Sound Library 16-13

Run-Time Library Overview

during the transfer state, playback will not occur until the processing of other streams in the second half of
the stream buffer in the currently processed streams. As in the case of preparation transfer above, the lag
time for playback lengthens as the stream buffer size increases.

Attributes for the Next Transfer

The attributes for the next transfer in each stream are specified in the transfer finished callback function.
The necessary attributes are as follows.

The head address on main RAM of the waveform data area (half as large as the stream buffer) for the next
transfer.

If the stream is completed in the next transfer,

1) Specify the termination in status.

2) Specify the size of the data for the last transfer. (The size must be a half of the stream buffer or less.)

Stream Termination

Termination of each stream is specified by setting termination for the attribute status and the size of the
last-transferred waveform data (half as large as the stream buffer or less) when setting the attributes for the
next transfer. The stream is terminated when playback of the stream specified in this setting is completed.

Key on/kKey off

With the SPU streaming library, only the sound generation (Key on) is carried out automatically. Sound
generation (Key on) is performed when the start of the streaming is processed. The sound cancellation (Key
off) requires to be processed by the program.

However, if sound cancellation (Key off) is carried out for the voice while the stream is being processed, the
state of the sound library may be unstable. Be sure to carry out the sound cancellation after stream
termination processing. Obviously, with this method, some lag time will exist between desired termination
of the stream and actual completion of processing. The recommended method around this problem is to
set the volume of the voice to 0.

Actual Flow of Stream Processing

The simple flow of the processing by the SPU streaming library is as follows. As for the details on each
function, refer to the explanation for each.

Initialization

The SPU streaming library initialization is performed by SpuStInit().

SpuStEnv *stenv;
stenv = SpuStInit (0);

The SpuStEnv structure returned by SpuStInit() is shown below.

 typedef struct {
 char status; /*stream status*/
 char pad1; /*padding*/
 char pad2; /*padding*/
 char pad3; /*padding*/
 long last_size; /*the size of last transfer at

 termination stage
 (last_size <= (size / 2))*/
 unsigned long buf_addr; /*The start address of stream

 buffer in SPU RAM*/
 unsigned long data_addr; /*The start address of SPU

 streaming data in main RAM*/
 } SpuStVoiceAttr;

16-14 Basic Sound Library

Run-Time Library Overview

 typedef struct {
 long size; /*The size of stream buffer*/
 long low_priority /*Priority of the stream; added in lib

 3.6*/
 SpuStVoiceAttr voice [24];
 } SpuStEnv;

Streams are processed by specifying the attributes for this structure.

Attribute Initialization

Size in the SpuStEnv structure is a common attribute for all streams. The size of the stream buffer is
specified here. The size of the stream buffer should be tailored carefully to meet the needs of the program.
The available area in SPU RAM and the number of stream buffers necessary need to be taken into
consideration. Also, as the size of the stream buffers increases, the lag time for new streams to be
processed and for termination of streams increases. However, with smaller stream buffers, more time will
be consumed by callbacks, from both the SPU DMA during each data transfer and from the SPU IRQ when
the end of each stream buffer is reached and playback needs to continue from the start of the stream
buffer.

Example:
stenv->size = 0x8000;

low priority is also a common attribute for all streams.

Set SPU_ON to lower the priority level of SPU streaming processing as compared to other processing (ex:
graphics processing will be higher priority than SPU streaming processing). The fixed value is SPU_OFF,
where the priority level is not lowered.

Example:
stenv->low_priority = SPU_ON;

The attributes which must be initialized for each individual stream are:

1) The start address of the stream buffer

= voice[].buf_addr in SpuStEnv structure

Example:
unsigned long buf_addr;
if ((buf_addr = SpuMalloc (0x8000)) == -1) {
 /* ERROR */
}
stenv->voice [n].buf_addr = buf_addr;

2) The start address in main RAM of the waveform data to be transferred during the preparation stage

= voice[].data_addr in SpuStEnv structure

Example:
stenv->voice [n].data_addr = 0x80yyyyyy;

The subscript (n in the above example) of the array stenv->voice corresponds to the voice number.

Callback Functions Setting

Each callback function is set as necessary. All the callback functions in the SPU streaming library take the
following syntax.

SpuStCallbackProc callback_proc (unsigned long voice_bit, long c_status)

When the callback function is actually called, the value of the voice numbers to be processed in each
callback function is given to the argument voice_bit by the bitOR of SPU_0CH to SPU_23CH. The state in
which the callback function is called is given to the argument c_status. The program analyzes the
arguments voice_bit and c_status, and processes them appropriately.

Basic Sound Library 16-15

Run-Time Library Overview

At a minimum, the transfer finished callback function must be called in order to process the stream. With
this callback function, the start address of the next section of waveform data to be transferred is specified,
and an argument of termination is specified to terminate the stream.

Voice Setting

The attributes for each streaming voice are set. For the start address of the waveform data in the voice
attributes, the same value as the start address of the stream buffer is set.

Example:
SpuVoiceAttr s_attr;

:
s_attr.voice = SPU_3CH;
s_attr.addr = stenv->voice [3].buf_addr;

:
SpuSetVoiceAttr (&s_attr);

Preparation for the Stream

As preparation for starting a stream, waveform data half as large as the stream buffer is transferred to the
stream buffer beforehand. This transfer is performed in order to eliminate the time-lag of actual sound
generation of the stream. Preparation for the stream is carried out by SpuStTransfer(), and
SPU_ST_PREPARE is specified as the first argument in the function..

The voices used for the stream are set for the second argument of SpuStTransfer() by the bitOR of
SPU_CH to SPU_23CH. The attribute initialization must be performed for the designated voices.

Example:

SpuStTransfer (SPU_ST_PREPARE, (SPU_0CH | SPU_1CH));

When the transfer corresponding to the requested voices is completed, the preparation finished callback
function is called.

After preparation, but prior to starting playback of the stream, the attributes for the next transfer must be
set. If the start of the stream follows immediately after the preparation, the arguments for the next transfer
must be set in the preparation finished callback function.

As the attributes for the next transfer, the start address of the section of waveform data area (half as large
as the stream buffer) is set.

Example:
stenv->voice [n].data_addr += (0x8000 / 2);

The section of waveform data for the next transfer need not be contiguous with the data which was
transferred during the preparation stage. Any area can be specified for the data_addr.

Start of the Stream

When preparation is completed for each stream, the stream can be started. SPU_ST_PLAY is specified as
the first argument of SpuStTransfer().

The voices used for the stream are set by the bitOR of SPU_0CH to SPU_23CH for the second argument
of SpuStTransfer(). This value must be the same as the value specified during the preparation stage.

Example:
SpuStTransfer (SPU_ST_PLAY, (SPU_0CH | SPU_1CH));

As soon as the stream is started, the sound generation (Key on) is performed.

When one transfer is completed in all the streams, the transfer finished callback function is called.

In the transfer finished callback function the attributes for the next transfer are set.

16-16 Basic Sound Library

Run-Time Library Overview

As the attribute for the next transfer, the start address of the next section (half as large as the stream buffer)
of waveform data to be transferred is specified.

Example:
stenv->voice [n].data_addr += (0x8000 / 2);

The section of waveform data from one transfer need not be contiguous with the data for the next transfer.
Any area can be specified for data_addr.

When more than one stream is processed, the transfer finished callback function is called at the end of
each transfer.

Stream Termination

To terminate the stream, SPU_ST_STOP is set for voice[].status in the SpuStEnv structure when specifying
the attributes for the next transfer in the transfer finished callback function processing. At this time, the size
of the section of remaining waveform data (half as large as the stream buffer or less) is set for voice[
].last_size. The stream is terminated after transferring the waveform data area represented by voice [
].data_addr when SPU_ST_STOP is specified.

Example:
stenv->voice [n].data_addr += (0x8000 / 2);
stenv->voice [n].status = SPU_ST_STOP;
stenv->voice [n].last_size = 0x4000;

The stream finished callback function is called at the completion of the stream playback. (Immediately
before the start of the next transfer if other streams are still being processed at this time.)

Completion

The completion of the SPU streaming library is performed by SpuStQuit().

SpuStQuit ();

Prior to calling this function, the termination processing must be completed for all the streams, and the
state must be idle, that is to say, the state after the stream finished callback function is called.

Basic Sound Library and Extended Sound Library Common Uses

Following are listed items which the present basic sound library (libspu) and extended sound library (libsnd)
have in common.

Initialization

Since SsInit() internally calls SpuInit() in libsnd, it is not necessary to call SpuInit() when using SsInit()

Sequence Data

libspu has no function to handle sequence data such as SEQ. Therefore, it is necessary to use libsnd
without fail when handling SEQ/SEP sequence data.

When creating an individual driver to analyze and generate sound sequence data using libspu it will be
necessary to use the root counter and event processing functions provided in the kernel library (libapi) for
time management.

Basic Sound Library 16-17

Run-Time Library Overview

Sound Generation/libsnd Voice Manager Function

libsnd dynamically controls the voice ratio and it generally controls the on/off of all 24 voices. Since libspu
cannot use these controlled voices by setting the voices assigned to libspu to SsSetReservedVoice() (with a
setting value less than 24) it will be possible to divide the voices controlled by libsnd from the voices which
libspu can use.

Transfer to the Wave Pattern Data Sound Buffer

Although libspu supports the data transfer to the sound buffer which does not obstruct VAB, when VAB
has been fed to the sound buffer there is no function which will reflect that attribute data to the voice.

Therefore, the transfer uses SsVabOpen(), SsVabOpenHead(), SsVabTransBody() or
SsVabTransBodyPartly() to transfer the wave pattern, to acquire header information, to select information
with SsUtGetVabHdr(), SsUtGetProgAtr(), or SsUtGetVagAtr(), to find out what location in the sound buffer
the wave pattern data has been transferred to and to set the voice attributes used in libspu with
SpuSetVoiceAttr().

At this time, in terms of memory regulation, since libsnd also uses SpuMalloc() it can coexist with the
SpuMalloc() called by the user (described later).

Furthermore, the default in libsnd is the DMA transfer mode. Even in libsnd the transfer mode can be
changed using SpuSetTransferMode(). SpuSetTransferMode() should be called before
SsVabTransBody()/SsVabTransBodyPartly().

As for the transfer completion decision, in libspu the transfer completion callback function can be used, but
at present this transfer completion callback function capability cannot be used in libsnd. When using the
transfer completion callback function in libspu and also before calling the wave pattern transfer function
(SsVabTransBody()/SsVabTransBodyPartly()) in libsnd, the transfer completion callback function must be
set to NULL.

(void) SpuSetTransferCallback ((SpuTransferCallbackProc) NULL);
:
SsVabTransBody (. . .);

Sound Buffer Memory Control and Reverb

In libsnd since SsInit() internally calls SpuInitMalloc(), there is no need to call SpuInitMalloc() when using
SsInit.

However, that control block is taken in libsnd internal and the size is (32+1). That is to say the number of
domains which can be simultaneously maintained by SpuMalloc() and SpuMallocWithStartAddr() is 32.

By making this SpuFree(), when the maximum maintained domain value is 32, the above maintain function
can be called as many times as desired.

Furthermore, since every time VAB is opened SpuMalloc() is called once within the library, and every time it
is closed internally SpuFree() is called once within the library, at a certain point in the above environment the
user’s maintainable maximum number of domains will be (32-(at that point the frequency of VAB
openings)).

If a frequency greater than this is desired for SpuMalloc()/SpuMallocWithStartAddr(), by immediately calling
SpuInitMalloc() after SsInit() the memory control will function within the domain provided to SpuInitMalloc()
by the control table. It will then be impossible to use the domain set in the library.

When replacing this control table it is necessary to provide the

SPU_MALLOC_RECSIZ x ((Frequency of VAB openings + frequency of SPUMalloc() calls by user) +1)

size domain to SpuInitMalloc(). Libsnd reverb has been provided using almost the same functions as in
libspu. Therefore, SpuReserveReverbWorkArea() in libspu can be used in the same way.

16-18 Basic Sound Library

Run-Time Library Overview

Please refer to the libspu and libsnd function reference for these functions.

Run-Time Library Overview

Chapter 17:
Serial Input/Output Library

Table of Contents

Overview 17-3
Library and Header Files 17-3

Driver and BIOS 17-3
Serial I/O Driver 17-3
BIOS 17-3
Communications Specifications 17-5
Default Settings 17-5

17-2 Serial Input/Output Library

Run-Time Library Overview

Serial Input/Output Library 17-3

Run-Time Library Overview

Overview

This library (libsio) provides standard input/output functions for connecting the PlayStation to the PC. It
supports the output of debug information to the PC.

Library and Header Files

To use the standard I/O library, you must link with the library file libsio.lib .

Your source files must include the header file libsio.h .

Driver and BIOS

The serial I/O library consists of the serial I/O driver and the serial I/O BIOS.

Serial I/O Driver

The serial I/O driver provides standard I/O using standard C-language procedures. By including the driver,
you can easily allocate standard I/O to the communications port. The BIOS should be used when
performing complex communication with a PC and modem, etc.

To include the serial I/O driver, call AddSIO(). To delete it, call DelSIO().

BIOS

The serial I/O BIOS provides low-level driver control and information acquisition functions that cannot be
covered by standard C functions. The interface function is _sio_control(). Since debugging data is normally
output from the library in standard I/O, when peforming data communication with a PC, unexpected data is
output. To avoid this, communication must be performed using the BIOS, without attaching the driver and
with the standard I/O in NULL mode. The BIOS will also operate when the serial I/O driver is not included.
The features provided in sio_control are shown below:

Syntax:

long _sio_control (
unsigned long cmd, /* command */
unsigned long arg, /* subcommand */
unsigned long param) /* argument */

Table 17-1: Command Summary

cmd arg Function

0 0 Returns driver status (*1)
1 Returns control line status (*2)
2 Returns communications mode (*3)
3 Returns communications speed

(bps units)
4 Reads 1 byte

1 0 System reservation
1 Sets param value as control line

status (*2)

17-4 Serial Input/Output Library

Run-Time Library Overview

2 Sets param value as
communications mode (*3)

3 Sets param value as
communications speed (bps units)

4 Writes 1 byte
2 0 Resets driver

1 Clears driver status error-related bits

Table 17-2: Driver Status

bit Contents

31-10 Undecided
9 1: interrupt on
8 1: CTS is on
7 1: DSR is on
6 Undecided
5 1: frame error occurs
4 1: overrun error occurs
3 1: parity error occurs
2 1: no communications data
1 1: able to read communications data
0 1: able to write communications data

Table 17-3: Control Line Status

bit contents

31-2 undecided
1 1: RTS is on
0 1: DTR is on

Table 17-4: Communications Mode

bit Contents

31-8 undecided
7,6 stop bit length

01: 1
10: 1.5
11: 2

5 parity 2 1: odd 0: even
4 parity 1 1: exists
3,2 character length

00: 5 bit
01: 6
10: 7
11: 8

1 Always 1
0 Always 0

Serial Input/Output Library 17-5

Run-Time Library Overview

Communications Specifications

Communications specifications can be selected from the following settings:

Table 17-5: Communications Specifications

Item Setting Value

Character length 5,6,7,8 bits
Stop bit 0,1,1.5,2 bits
Parity check None, even, odd
Communications Speed 1-2073600 bps (approximate)

Default Settings

The initialization which is performed in the serial I/O driver inclusion process is indicated below:

Table 17-6: Default Setting

Item Setting Value

Character length 8 bit
Stop bit 1 bit
Parity check None

17-6 Serial Input/Output Library

Run-Time Library Overview

Run-time Library Overview

Chapter 18:
HMD Library

Table of Contents

Overview 18-3
Library and Header Files 18-3

HMD representations 18-3
Hierarchical structures 18-3
Polygon/MESH 18-4
Shared polygons (one-skin model) 18-5
Animation 18-5
MIMe 18-5
Miscellaneous 18-6

Basic architecture 18-6
The framework layer 18-7
The primitive driver layer / data format layer 18-7

Hierarchical coordinate systems and process flow 18-7
Mapping 18-8
Scanning 18-9
Sorting 18-9

Basic data structures 18-9
Hierarchical structures 18-9
Primitives 18-9
Primitive sets 18-10
Primitive headers 18-11
Sections 18-11

Primitive drivers 18-12
Information that can be accessed from the primitive driver 18-13
Information that should be returned to the framework 18-13

Addendum A: Migrating from TMD to HMD 18-13

18-2 HMD Library

Run-time Library Overview

HMD Library 18-3

Run-time Library Overview

Overview

The HMD Library (libhmd) provides functions and definitions for handling the HMD format, which integrates
several types of data, including modeling data, animation, texture data, and MIMe. Libhmd uses the jump
table method that was used in libgs to handle TMD data. Processing is performed via "primitive types" and
their corresponding "primitive drivers. SCE provides standard primitive drivers for handling a variety of
types, including modeling data with hierarchical structures, one-skin models, key-frame animation and
vertex/joint MIMe.

You use standard public APIs to call primitive drivers within the HMD frameowrk. You can define your own
primitive drivers to provide optimization and expansion for individual game titles.

Notes for version 4.3 of libhmd

In PlayStation library versions between 4.0 and 4.2, HMD-related functions were part of the libgs and libgte
libraries, but are now offered as a separate library. These functions have been removed from the libgs and
libgte libraries, and their declarations have been removed from the corresponding header files. You should
use libhmd along with the header file libhmd.h for HMD-related functions.

The environment map is provided only as a Beta version with this release. This is because future releases
may introduce format changes that are not compatible with the current release. The Beta version primitives
are currently not supported by SCE and should be used only at the licensee's discretion.

Library and Header Files

Programs that make calls to the HMD library must link with the library file libhmd.lib . Because libhmd is
currently dependent on libgs, libgs.lib must also be linked in.

Source files must include the header files libhmd.h and libgs.h .

HMD representations

With HMD, the framework and the primitive drivers (the functions that perform the actual data handling) are
designed to be loosely coupled using a standardized API. SCE provides a group of general-purpose
primitive drivers, and users can write their own specific primitive drivers.

This chapter describes the representations that are available from the SCE primitive drivers.

Hierarchical structures

In the TMD/PMD formats used in previous versions of libgs, data in hierarchical structures had to be
described in the program code. Hierarchical structures could be represented with TOD but this made the
code more verbose and was often an obstacle to smooth communication between designers and
programmers. HMD overcomes this problem by implementing hierarchical structures as data formats.

18-4 HMD Library

Run-time Library Overview

Figure 18-1: Hierarchical Structure

Parent coordinate system A

A’s Child 1

A’s Child 2

Polygon/MESH

Polygon/MESH is a high-order set of what was provided in TMD/PMD. In addition to standard polygons,
polygons using MESH (Strip Mesh) can also be described with this structure. In some cases, the use of
MESH can improve performance both in terms of data size and calculation efficiency.

Figure 18-2: Strip Mesh

0

1

2

3

4

5

Referring to the figure above, if polygons were used, four triangles and 4 x 3 = 12 coordinate
transformations would be required. However, with Strip Mesh, only 6 coordinate conversions are necessary.
In terms of the data structure, four triangles would normally require 12 indexes to specify the vertices, while
Strip Mesh would only require 6. The more complex the figure, the greater are the advantages in speed and
memory efficiency offered by Strip Mesh. Rendering speed is improved since GPU packets are generated
as connected triangles.

HMD Library 18-5

Run-time Library Overview

Shared polygons (one-skin model)

With HMD, a polygon spanning the hierarchical structures described above can be pasted, allowing one-
skin models to be represented. These can be used at joints so that more natural, smoother figures can be
represented.

Figure 18-3: Shared Polygons

Polygon a of coordinate system A

Polygon b of coordinate system B

Polygon c of coordinate system C

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

��
��
��
��
��
��
��
��
��
��

P

Q

R

In the figure above, three shared polygons (P, Q, R) are defined. Polygon P has two vertices belonging to
coordinate system A and one vertex belonging to coordinate system C. Thus, the polygon is shared
between coordinate system A and coordinate system C. The vertices of the triangle in polygon Q belong to
coordinate systems A, B and C. This polygon is shared by three coordinate systems. R is a quadrangle
polygon shared by coordinate systems B and C.

With this arrangement, the values of coordinate systems A, B, and C could be changed without losing the
connectivity between the polygons, since polygons P, Q and R follow the coordinate systems to which their
vertices belong.

Animation

Key-frame animation can be performed with three types of interpolation curves (Linear, Bezier, and B-
Spline).In addition, multiple motions can be saved in HMD data and switched during execution.

Key-frame animation can be applied to standard coordinate data. If the data is in memory, arbitrary values
can be animated to provide more varied expressions, e.g. moving MIMe parameters and controlling polygon
attributes such as color.

MIMe

MIMe, which had been provided in the past with sample programs, has now been implemented as a format
integrated into HMD. MIMe is suited for facial animation since the high-speed multi-layer interpolation
performed by the GTE can be used to combine multiple key frames.

In addition to the vertex/normal MIMe provided previously, HMD allows the use of "joint MIMe", which
interpolates joint angles. Compared to vertex/normal MIMe, joint MIMe provides reduced data size and
calculation load.

By combining vertex and joint MIMe, various movements can be efficiently expressed, e.g. the muscle
formed when flexing an elbow.

18-6 HMD Library

Run-time Library Overview

Figure 18-4: Combining vertex and joint MIMe

Interpolation

Vertex
differential

Angle
differential

Basic form

Key 1 Key 2

Weight 1 Weight 2

The "basic form", "angle differential", and "vertex differential" shown in the figure above can be specified in
HMD data. "Weight" can be controlled via application code or by using HMD animation.

Miscellaneous

Camera/light primitives and experimental primitives, such as ground primitives containing terrain data and
simulated environment mapping primitives (Beta version), are provided.

Samples of primitive driver source code are also provided as a reference for implementing user-defined
primitives.

Basic architecture

The basic HMD architecture is shown in the figure below.

Figure 18-5: HMD Basic Architecture

Framework layer

Primitive driver layer

Data format layer

HMD library

Standard
drivers

��
��
��

Title extensions
����������
����������
����������

��
��
��

���
���
���

���
���
���

Third-party extensions

The "framework layer" is the framework provided by libhmd. The API between the framework layer and the
primitive driver layer is standardized, allowing user-defined primitive drivers and third-party products to be
used. The "data format layer" refers to data formats based on combinations of primitive drivers.

HMD Library 18-7

Run-time Library Overview

The framework layer

The framework layer performs operations such as: "mapping" of HMD data loaded in memory; "scanning"
which binds primitive drivers to their corresponding primitive types; and "sorting" to traverse the data
structures and call the actual primitive drivers. Each of these operations will be described in a later section.

The primitive driver layer / data format layer

One part of the HMD data format is defined by the framework, while the other part is defined by the
implementation of the primitive driver. The former cannot be modified or extended independently by the
user, but the latter can be defined freely based on the fixed set of rules provided by the framework.

As one example, due to its general-purpose design, the primitive drivers provided by SCE for processing
polygons may be inadequate in terms of speed. In this case, performance improvements can be obtained
by defining new drivers specifically for a particular title.

Hierarchical coordinate systems and process flow

The following figure shows the operations that are performed starting with the hierarchical coordinate
system.

Figure 18-6: Process flow and data structures

�������������������
�������������������

������������������
������������������

�������������������
�������������������
�������������������

�����������������
�����������������

������������������
������������������
������������������

�������������������
�������������������
�������������������

������������������
������������������
������������������

�����������������
�����������������
�����������������

�������������������
�������������������
�������������������

������������������
������������������
������������������

�����������������
�����������������
�����������������

Non-rendering
primitive set

Rendering primitive set

Coordinate system Process end

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

The process begins from the pointers to the primitive sets that correspond to each of the root coordinate
systems.

The figure above gives a schematic representation of the flow through the process. N+2 pointers to
primitive sets are placed near the top of HMD data. HMD stores N+2, rather than N pointers so that
pointers to primitive sets for performing coordinate system and unrelated processing (e.g. pre-processing
such as loading textures and post-processing such as rendering shared polygons) can also be included.

18-8 HMD Library

Run-time Library Overview

Pointers to the second primitive set through the (N+1)st primitive set correspond to the N coordinate
systems which are described later. Primitive sets can also contain pointers for linking to the next primitive
set. This enables completely different types of primitive sets to be processed one after another on the same
coordinate system. Coordinate system data also contains pointers for specifying the parent coordinates.
These pointers are used to link the hierarchical coordinate system with their related primitives.

Figure 18-7: Linking primitive sets and coordinate systems

Pointer to post-process primitive set

Pointer to pre-process primitive set

Pointer to primitive set #1

Pointer to primitive set #2

Pointer to primitive set #N

:

Coordinate system 1

N+2;

N;

Coordinate system 2

:

Coordinate system N

Primitive sets come in two varieties: "non-rendering " and “rendering". Non-rendering primitive sets handle
operations where direct GPU packets are not generated, e.g., loading animation or texture data to VRAM.
“Rendering primitives" generate GPU rendering packets based on the results calculated from non-rendering
primitives or values specified beforehand in data. The GPU packets are then entered into the specified
ordering table.
The data structures of the primitive sets are described in a later chapter.
In order to use HMD, parsing must be performed according to the data structures described above, and
the following three operations must be performed.

Mapping

When HMD data is created during authoring, embedded pointer values are specified as offsets from the
start of the data. Mapping involves converting these offsets into real addresses in the memory space where
the data is placed. In general, mapping is performed only once after HMD data is read into memory. For
more information on mapping, please refer to the description of the GsMapUnit function in the Library
Reference.

HMD Library 18-9

Run-time Library Overview

Scanning

Primitive types are saved as 32-bit values in HMD. Scanning involves replacing these primitive types with
pointers to the primitive driver functions corresponding to these values. In general, scanning is performed
only once after mapping. For more information on scanning, please refer to the description of the
GsScanUnit function in the Library Reference.

Sorting

Sorting involves calling the actual primitive drivers set up during scanning. In general, sorting operations are
called for each Vsync. For more information on sorting, please refer to the description of the GsSortUnit
function in the Library Reference.

Basic data structures

The basic data structures used in HMD can be separated into the categories below:

Hierarchical structures

These structures are as described in the previous chapter. Hierarchical structures serve as the starting point
for processing.

Primitives

The primitive is the smallest unit of the HMD data structure. Primitives contain primitive types and are called
when the corresponding primitive driver performs a sorting operation. The structures below are defined by
the framework (shown in the HMD assembler "LAB" format).

DEV_ID(dev_id)|CTG(ctg)|DRV(drv)|PRIM_TYPE(type);

H(size); M(H(data));

DATA; /* for "size - 1" long words */

• DEV_ID(dev_id)|CTG(ctg)|DRV(drv)|PRIM_TYPE(type);
The first 32-bit value represents the primitive type and is replaced by a pointer to the corresponding
primitive driver function during the scanning operation.
"dev_id" is a 4-bit value referred to as the "Developer ID" and indicates the vendor that defined the
primitive. 0x0 and 0x01 are SCE. 0xf is reserved for user-defined primitives. Other values are planned
for use by primitive drivers defined by third-party vendors.
"ctg" is a 4-bit value indicating the major category of the primitive. The standard primitives provided by
SCE are categorized in the following manner: polygons (CTG_POLY: 0); shared polygons
(CTG_SHARED: 1); and images (CTG_IMAGE: 2).
"drv" is an 8-bit value used when actions need to be modified, without needing to redefine the data
structures used by the primitive. With polygon primitive types provided by SCE, these bits are used to
specify double-sided/single-sided polygons for example.
"type" is a 16-bit value specifying the primitive model.

• H(size);
A 16-bit value which represents the size of the primitive.

• M(H(data));
The interpretation of the lower 15 bits of this value depends on how the primitive drivers are
implemented. The highest-order bit is changed from 1 to 0 during scanning in order to prevent double-
scanning. Thus, only the low-order 15 bits are valid as "data".

• DATA;
The value of this field depends on the primitive type. It is followed by "size-1" words of data.

18-10 HMD Library

Run-time Library Overview

For example, the Gouraud triangle primitives provided by SCE would be as shown below.

DEV_ID(SCE)|CTG(CTG_POLY)|DRV(0)|PRIM_TYPE(TRI|IIP);

H(2); M(H(20)); /* size: always 2 for SCE's standard polygon
primitive data: interpreted as a polygon count
for this primitive driver */

(Poly_0010 - Poly_0000) / 4; /* Offset from the start of the
polygon section contained in the
corresponding polygon header.In this
case, data for 20 Gouraud triangles
are arranged continuously from the
offset position. */

The primitive driver is called at least once for each primitive. Thus, for efficiency, it is advantageous to
perform many operations for a single primitive. For example, in the polygon primitive type described above,
it would be possible to prepare the data as 20 primitives containing one polygon each. However, this would
provide inefficient execution in terms of instruction cache hit rate and memory access.

Primitive sets

A primitive set contains multiple primitives. A link can be made to the primitive set that is to be processed
next. A pointer to the "primitive header" is also saved and the data necessary for executing the primitive
driver is provided.

PrimSet:

next_prim_set;

PrimHdr;

M(num_of_types);

• next_prim_set;
Saves the pointer to the next primitive set. This makes it possible to manipulate different types of
primitive sets on a single coordinate system, according to an explicitly specified sequence. Depending
on how the link is set up, the size of the data can be reduced through instancing. When operations are
to be concluded for a primitive set, a special value "TERMINATE" (0xffffffff) is specified.

• PrimHdr
Specifies a pointer to a primitive header. The specified primitive header must be in a format matching
the primitive type contained in the primitive set.

• M(num_of_types);
Specifies the number of primitives contained in the primitive set. Double-mapping is prevented by
setting the high-order bit to 0 when "next_prim_set" and "PrimHdr" are mapped.

As an example, a primitive set containing the Gouraud triangle primitives described above is shown below.

PolyPrimSet:

TERMINATE; /* next prim; nothing more to process */

PolyPrimHdr / 4;/* header containing pointer to section in which
polygon data, etc. are saved */

M(2); /* num of types; one more in addition to Gouraud triangles */

HMD Library 18-11

Run-time Library Overview

Primitive headers

In general, the primitive header contains pointers to "sections" within the HMD data. Numeric data may also
be saved in the primitive header. The format of the primitive header is dependent on the primitive type. In
other words, the format depends on the implementation of the primitive driver that corresponds to the
particular type.

PrimHdr:

hdr size;

M(ptr);

num;

 :

• hdr_size
Specifies the size of the primitive header. Contains the number of words (not including the space taken
by this value itself.)

• M(ptr);
If the high-order bit is 1, saves a pointer to a particular section which is then mapped.

• num
If the high-order bit is 0, the value is interpreted as a standard numeric value and mapping is not
performed.

The primitive header corresponding to the Gouraud triangles is shown below.

PolyPrimHdr:

3; /* hdr size */

M(Poly_0000 / 4); /* base address for polygon data */

M(Vert_0000 / 4); /* vertex data; referenced in polygon data via
indexing */

M(Norm_0000 / 4); /* normal data; referenced in polygon data via
indexing */

Sections

A section is used to group together data of a type other than what is described above. The primitive header
itself is also set up as a "primitive header section".

The figure below shows the relationship between the different components.

18-12 HMD Library

Run-time Library Overview

Figure 18-8: Primitive sets, primitives, primitive headers, sections

Primitive set 1

Primitive 1

Primitive 2

Primitive N

:

Primitive header 1

Section 1

Primitive set 2

Coordinate
system

Section 2

Primitive header 2

Section 3

Terminal

In the example shown in the figure, primitive set 1 contains N primitives, and these refer to primitive header
1. Primitive header 1 contains pointers to sections 1 and 2. Primitive set 2 is linked from 1 and refers to
primitive header 2, which is in a different format (or simply contains different values) from primitive header 1.
Primitive header 2 contains a pointer to section 3.

Primitive drivers

In the framework described in the previous chapters, primitive drivers corresponding to the different types
are called during sorting operations.

HMD Library 18-13

Run-time Library Overview

Information that can be accessed from the primitive driver

The primitive driver can receive the following information from the framework.

• Copy of the primitive header
Pointers to sections specified in the header and numeric data can be obtained.

• Pointers to primitives
Data belonging to a primitive can be obtained.

• Pointers to the ordering table specified by GsSortUnit
For rendered primitives, the generated GPU packets are entered.

Information that should be returned to the framework

Primitive drivers return a pointer to the next primitive as the return value.

The location of the next primitive can be determined by referencing the size of the primitive. Depending on
the defined primitive, it may be possible to determine the pointer to the next primitive without referencing
the size (for example, with the standard polygon primitive driver from SCE, the fact that size is always 2 can
be used to return the pointer to the next primitive).

Addendum A: Migrating from TMD to HMD

• Changes in calculation functions
The GsSortObject…() functions are replaced with GsSortUnit().

• Changes in object handlers
Object handler structures change from GsDOBJ… to GsUNIT. With HMD, the behavior of a primitive
driver is not controlled with attributes, but instead by switching to a different primitive driver.

GsUNIT contains two members. coord saves pointers to the coordinate system. primtop saves the start
of the primitive block.
As before, the local world matrix should be calculated from coord and GTE should be set before calling
GsSortUnit().
primtop is passed on to GsSortUnit().

• Changes in initialization
Pointers specified in the HMD data are converted to real addresses via GsMapUnit().
GsScanUnit() is used to get addresses and types for embedding pointers to the primitive drivers. The
application program looks at the type bit, determines which primitive driver should be joined, and sets
up the obtained address. When the ini bit in the type field is on, a function for initializing the sections
that are defined locally--for example, GsMapCoordUnit()--is called.

18-14 HMD Library

Run-time Library Overview

	RUN-TIME LIBRARY OVERVIEW
	Version 4.3, August 1998
	Summary Table of Contents
	List of Figures
	List of Tables

	Changes Since Last Release
	About This Manual
	Changes Since Last Release
	Related Documentation
	Manual Structure
	Developer Reference Series
	Typographic Conventions
	Developer Support

	Ch 1: Overview of the PlayStation OS
	The PlayStation OS
	Features of the PlayStation OS
	Starting and Operating the OS
	PlayStation OS Library Components

	Ch 2: Kernel Library
	Overview	2-3
	Root Counter Control
	Events
	Threads
	I/O Management
	Module Control
	Controller Features
	Kanji Fonts
	Memory Allocation

	Ch 3: Standard C Library
	Overview

	Ch 4: Math Library
	Overview
	Floating-Point Numbers
	Error Processing

	Ch 5: Memory Card Library
	Overview
	Memory Card
	BIOS
	File System
	Realtime Access
	Rules for Use of Memory Card
	Other

	Ch 6: Extended Memory Card Library
	Overview
	Libcard and the Card BIOS
	Use with Multi Tap
	The Memory Card
	Rules for Using the Memory Card

	Ch 7: Data Compression Library
	Overview
	Compressor and Decompressor Functions
	MDEC
	Compression of Image Data
	DCT (Discrete Cosine Transform)
	BVQ (Block Vector Quantization)
	Huffman Encoding
	Compression of Sound Data

	Ch 8: Basic Graphics Library
	Overview
	Graphics System
	Primitives
	Ordering Tables
	Synchronization and Reset
	Packet Double Buffer
	Texture Mapping
	Primitive Rendering Speed
	Primitive Division
	Debug Environment
	Cautionary Programming Notes

	Ch 9: Basic Geometry Library
	Overview
	Theoretical Geometry Operations Using the Basic Geometry Library
	Normal Line Clipping
	Depth Cueing
	Back Color, Far Color, BG Color
	Material Light Source Calculation with Material Quality
	Functions with Three or Four Vertices
	libgte Argument Format
	libgte Function Flag Variables
	About libgte Mesh Functions
	Changing Screen Offsets
	PMD Functions
	SMD, RMD Functions
	Polygon Division

	Ch 10: Extended Graphics Library
	Overview
	Coordinate Systems
	Objects
	Viewpoint
	Light Sources
	Drawing Priority Order (Ordering Table)
	Frame Double Buffer
	Clipping
	Packet Preparation Function
	Packet Area
	Drawing
	Jump Tables
	Scratch Pad Usage Volume
	mip-map Library

	Ch 11: CD/Streaming Library
	Overview
	CD-ROM Library Overview
	CD-ROM Sectors
	Addressing (Location Specification)
	Transfer Rate
	Sound Control
	Primitive Commands (Low Level Interface)
	Command Synchronization
	Data Read
	High-Level Interface
	ADPCM
	Position-Confirmation Utility
	Event Services
	Callback, Synchronous Function Overview
	Special CD-ROM Notes
	Streaming Library Overview
	Streaming
	Synchronization Control
	Ring Buffer
	Ring Buffer Format
	Memory Streaming
	Interrupt Control of 24-Bit Movie Playback Time
	Interrupt Functions Used

	Ch 12: Extended CD-ROM Library
	Overview
	Description of libds
	Differences from libcd
	Initialization and Exit
	The Command Queue
	Command Packet
	The Simple Callback
	Other

	Ch 13: Controller/Peripherals Library
	ETC Library Overview
	Callbacks
	Programming Notes
	Gun Library
	Multi Tap Library
	Controller Library
	Initialization
	Precautions

	Ch 14: Link Cable Library
	Overview
	Driver and BIOS
	Programming Hints

	Ch 15: Extended Sound Library
	Overview
	Score Data
	MIDI Support
	Sound Data
	Function Execution Sequence

	Ch 16: Basic Sound Library
	Overview
	VAG Format
	Voice Audio Source Control Function
	Noise Audio Source Control Function
	LFO Control Functions in Intervals
	Reverb Control Function
	Function for Optional Data Transfer to Sound Buffer
	Interrupt Request Function for Sound Buffer Access
	Sound Buffer Memory Management
	Function for Mixing CD and External Digital Input
	Transferring Data Decoded by SPU to Main Memory
	Initializing, Starting and Stopping SPU Processing
	SPU Streaming Library
	Basic Sound Library and Extended Sound Library Common Uses

	Ch 17: Serial Input/Output Library
	Overview
	Driver and BIOS

	Ch 18: HMD Library
	Overview
	HMD representations
	Basic architecture
	Hierarchical coordinate systems and process flow
	Basic data structures
	Primitive drivers
	Addendum A: Migrating from TMD to HMD

