
PlayStation Sampler Disk
Specification for Playable Game Segments

Overview

This document sets out the guidelines for generating a playable game
demonstration to be included in a PlayStation sampler. This document includes
a specification of the details involved in generating a demonstration, and a
technical checklist.

Technical Specification

Launcher Program
This directory contains launcher, a simple launch program based on the one
for the full demo disk. There is a makefile for making launch.exe, the source
for launch, in case you need to make temporary changes (temporary, mind) and
an example cti file showing how to lay out an example program on the emulator
to be loaded by and run by launch. Incidentally, launch uses bs.lib, a
specially built subset of the full libraries. bs.lib is copyright SCEE.

What does launch do ?

Basically, it boots the machine, displays a crappy icon, and then loads and
runs the executable at the location specified in source. Currently, this
location is sector 24. You will likely need to modify this location to match
your situation.

If your code is all ok, and all is well, the dev system should printf to the
host:

<Some stuff about the bs heap, data locations and so on>
<Followed by the stuff from PadInit()>
<and lastly:>

Launcher: Set loc for seek
Launcher: Program go.

At this point, launch has seeked to your program and is loading it.
Immediately after this, your program will be run. If something goes wrong,
launch will timeout and reboot the machine. This will probably cause repeated
reboots, but you never know. Now your game should be running.

The executable will be loaded according to the XF_HDR data at the start of
the .EXE, i.e., it should have correct info in it or all will be lost; the
program is loaded to the address specified in the t_addr field, and the bss
is cleared.

Overview
The way the demo disk actually works is as follows. When the PlayStation
boots up at power on, the launcher program is loaded from CD into main RAM
and runs. The launcher is loaded to and runs within the 32K bytes of RAM
right above the PlayStation kernel's 64K of RAM (80010000 - 80018000). The
launcher then launches the menu program, which allows the user to select and
play the various games, and do whatever other activities are provided. Once
the user has chosen your playable demo, your executable (.EXE) will be loaded
from CD; the BSS segment will be cleared, and your program will be executed.
While your program is running, the launcher will still be in RAM, so your
program _must_ not write to memory between 0x80001000 and 0x80018000. Since

you are probably used to not touching memory inside the kernel's space, it is
anticipated that altering your code to avoid corrupting the launcher will
probably only require that you re-link your code with an org address 32K
bytes higher than before. Hopefully, losing this 32K of RAM will not require
a lot of changes to your game code. If you are pushed for RAM, you may
consider checking the size of the stack you are using - the default is 32K,
which is pretty big. The launcher keeps its own small stack inside its 32K,
so you don't need to worry about corrupting its stack; your stack (in
standard configuration) is in the top 32K of memory. With the launcher
loaded, and your program running, the main RAM looks like:

0x80000000 - 0x80010000 PlayStation Kernel RAM space
0x80010000 - 0x80018000 launcher program and stack
0x80018000 - 0x80.... Your demo code and data
0x801f8000 - 0x801fffff Your stack (assuming the default size and position

assigned by libsn)

In order to maintain sanity, your demo must live within its own directory on
the CD, which will contain the data files used by your demo and any other
information it needs, with the exception of any DA audio, which will be a
separate track on the CD. You are encouraged to keep the number of files you
use to a minimum, as some other pieces of code on the disk may use
CdSearchFile, with its limitations of around 40 directories with about 30
files in each. If your application uses a number of files anywhere near this
limit, then your application will likely cause other applications to fail (in
which event, the applications are prioritized). The launcher runs your
program using the kernel call Exec(), and so your playable demo must be a
standard PlayStation .EXE file. Critically, in order for your playable demo
to accept arguments, and return control to the launcher properly, you must
link your code with the provided startup.obj, a replacement for the startup
code in libsn.lib. This start-up module does not clear the bss and set up the
heap, because if your playable demo does this, it may overwrite the launcher.
The only problem is that code linked with startup.obj will not run in its own
right (obviously). So that you can test your executable, a simplified version
of our application launcher is provided with this distribution.

In addition to the memory and start-up restrictions described above, your
program must do its initialisation, and tear down, as below. This small
fragment of code is essentially a harness for a program that will return
properly to the launcher and also leave the various PlayStation subsystems in
a usable state.

#ifdef LINKED_STARTUP /* If we have linked startup.obj */
int main(int argc, char** argv) /* launcher will pass argc, argv to you. */
#else
int main() /* Plain old main instead. */
#endif /* PSX doesn't like argc, argv in a main

prog */
 {
 ResetCallback(); /* Clear all of the CD callbacks. */
 CdInit(); /* Re-initialise the CD subsystem. */
 PadInit(0); /* Initialise the pads. */
 ResetGraph(0); /* Cold boot the GPU. */
 SetGraphDebug(0); /* Turn GPU debugging off. */

 /* Now you can do any other startup you need to */
 /* And the code from here on is your own */

 . . .

. . .

. . .

. . .
 /* Little Johnny has been killed by the giant spiders from Mars, so.. */
 /* This is the end of the program now. */

 /* reverse any callback initializations */
 /* stop and close any events */
/* failure to do these almost reliably causes crashes in the launcher or in
other demos, and will equally reliably involve another revision of your demo
*/

 StopCallback(); /* Stop the CD callbacks. */
 PadStop(); /* Stop pad reading. */
 ResetGraph(3); /* GPU warm reset */
 return (0); /* This is necessary too. */
 }

The launcher will pass the standard C variables argc and argv to your
program. However, argv will not be a ragged array of characters, it will
actually just point to an array of integers; argc will be four, as your demo
will be passed four pieces of information. The contents of argv will be: the
mode of the demo (interactive or non-interactive), the time-out you will use
to stop the playable demo, the sector # for the directory containing your
app, and the track index of the game's first DA track. We will use ensure
that your DA tracks are stored sequentially beginning at the specified track
number. DA track numbers are 1 indexed. If the game does not use DA,
arguments four will be zero and can be ignored. While you are free to use
whatever mechanism you choose to locate your files on the cd, the sector #
for your application's directory is provided for speed, as your file
positions can be hard coded as offsets from this value.

You can figure out the mode, time-out, position, and DA information using the
following code:

#define INTERACTIVE 0
#define NON_INTERACTIVE 1

#ifdef LINKED_STARTUP /* If we have linked startup.obj */
int main(int argc, int* argv) /* launcher will pass argc, argv to you.

*/
/* argv is actually an array of integers.
*/

#else
int main() /* Plain old main instead. */
#endif /* PSX doesn't like argc, argv on its own

*/
 {
 int mode; /* Demo mode */
 int timeout; /* timeout in seconds. */
 int first_DA_track; /* First DA track */
 int sector_offset; /* location of application directory */

 /* All the usual startup stuff etc. */

 #ifdef LINKED_STARTUP
 mode = argv[0];

 timeout = argv[1];
 first_DA_track = argv[2];
 sector_offset = argv[3];
 #endif

 /* And on with the action */

Submission Form
(submit with demonstration)

Game Title:
Publisher:
Developer:
Project Supervisor (Name, Phone, E-mail):

Primary Technical Contact (Name, Phone, E-mail):

Style of Game (e.g. shoot-em-up, racing, etc.):

Game Function: Playable? Auto-Play for Non-Interactive? FMV only?

Controller / Peripheral Support (final game & this demo):

Size of EXE on CD (bytes):
Size of Data on CD (bytes):

Build Instructions (alternatively, submit a .cti or .ccs file with your
data):

Playable Section Technical Checklist
(MUST BE SUBMITTED WITH DEMONSTRATION)

Please verify all of the following technical details before submitting your
demonstration:

 o Demo linked with sampler.obj.
 o Demo orged at 0x80018000 or above.
 o Demo does not write to memory in range 0x80010000 r 0x80018000.
 o Demo is configured for NTSC.
 o Demo does startup and shutdown as specified above.
 o Demo behaves according to the specified mode

(interactive/noninteractive).
 o Demo programs using DA pay attention to argv[3] in order to determine

the appropriate DA tracks.
 o Demo executable and data lives within its own directory.
 o Demo can be quit in either mode with 'select' key at any point, on any

screen.
 o Demo falls out of main in order to exit.
 o Demo terminates at the end of a game segment or after the specified

timeout.
 o Interactive demo will never sit without input for more than the

specified timeout.
 o Demo removes any callbacks and event handlers before closing down.
 o Demo is not in the middle of DMA when closing down.
 o Demo clears the reverb buffer in SPU RAM before closing down.

 o On a debug station, demo is tested to indefinitely launch successfully
from the provided launcher, and return control to the launcher. (This
loop should be verified for an absolute minimum of 10 iterations in
both interactive and noninteractive modes).

 o Demo does not depend on the state or contents of RAM (other than BSS),
data cache, VRAM, SPU RAM, CD sector buffer, or I cache at startup.

 o Stack pointer has been set properly in your .EXE header to the value
that you require (by you - use setsp program included with harness
distribution).

 o Printf() inserted at the start of main() showing arguments received by
the launcher.

 o Printf() inserted at the end of main() to mark end of demo execution.

