

$PSDocId: Document Release 1.0 for Run-time Library Release 4.3$
REVISION HISTORY : DBUGPSX debugger

Note: Many of these revisions are for internal tech-support reference
and were not actually released.

4.XX all have C and assembler expression evaluator,
 new variable and watch window (see below for details).
 These debuggers are 32 bit DOS executables using a
 DOS extender.

4.53 14/06/95 allows alternate register window layout
 (use /R switch on command line or press Alt-R in debugger)
 (for Sean @ Core Design)

4.54i 19/06/95 new resetcpu code - not much use until we've modded DEXBIOS
 to force a re-load of SNPATCH though (soon).
 22/06/95 hex No.s in C exprs don't need leading zero anymore
 memory ranges of configs other than .C00 ignored
 hopefully fixed occasional missing cursor on alt screens
 allows modification of variables in Watch and Var windows
 hard break option now supports instruction fetch (PC) detection
4.55i 23/06/95 Oops. re-fixed expression eval to handle known symbols OK.
 fixed old error message problem for unrecognised symbol

4.60 05/07/95 dereferencing a pointer now fixes class to STATIC
 (so deref of a watchpoint register pointer to a structure is
 now correct)

4.61 06/07/05 changing screens no longer flushes message buffers
 message buffer increased to 100 lines.

4.62 06/07/95 auto-detects C startup and runs to main() if not given /d
 command line switch

4.63 26/07/95 minor update: fixed shift-f6 (clear all breakpoint counts)

4.64 28/07/95 restricted auto-source-mode, to only if no config file
 (because it was annoying developers)

4.65 28/07/95 restricted auto-source-mode, to only if no config file
 (but still got auto-run to main)

4.67 09/07/95 removed 'makesafe' call from CPE loader
 now *does not* turn off ints before program starts

4.69 24/07/95 now supports source file paths (Alt-P in file window)
 Alt-L and Ctrl-L no longer crash Var and Watch windows

4.70 01/09/95 Automatic Overlay Support (see also OVLEGPSX.ZIP for example)
 Unix \n newlines now work properly in message window

4.71 14/09/95 + fixed name completion that I broke in 4.70

4.73 21/09/95 fixed memfollow (alt-F in memory window to follow ptr)

4.74 21/09/95 mouse click in zoomed window now OK
 cursor clamping to left of mem window corrected.

4.75 26/09/95 stack-crawl (left and right arrow in var window)
 cexp.asm separated from main code (as MASM couldn't cope)

 'searching' box in file window now hides if not found
 update animation only active if continous update mode
 condition on hardware break that was done for Williams in
 4.65s is now back

4.76 28/09/95 Unix (LF) or DOS (CRLF) or MAC (CR) newlines now
 work properly in message window. (from 4.70 the DOS
 ones were accidentally double-spaced.)

4.76a29/09/95 allows $ in C names (for Carolyn @ EA)
 <- and -> starck crawl so array index changing is
 now relocated to < and > (or , and .)
 top level of Var window now leaps to C callstack display

4.77 16/10/95 Pseudo-support for long long (64 bit) data type

4.78 06/11/95 can now display float and double data in watch & var windows

4.79 13/11/95 fixed DOS extender quirk which was causing
 'UPLOAD MEM TO FILE' to fail for amounts >4K (ver 4.78 only)

4.80 15/11/95 changed shift-esc makesafe so that ints *stay* off
 modded ctrl-F2 'prog reload' so breakpoints are preserved.

4.81 21/11/95 restored arrow keys in Var window to change array index
 C-callstack-crawler now on < and > (or comma and dot)

4.82 24/11/95 C expression evaluator now supports typecasting

4.83 14/12/95 OK, I've neatened up some key assignments used in
 stack browsing. See C callstack browsing below for
 details.

4.84 15/02/96 ctrl-F9 to restore IRQ status (to what it was b4 shift-esc)
 and run + some minor dialog changes

4.85 15/02/96 space bar toggles window between source & dis modes

4.86 16/02/96 global scope can now be seen whilst stepping overlays

4.87 26/02/96 corrected enum display in watch/var window

4.88 07/05/96 new /k switch forces makesafe before CPE downloads

4.89 06/06/96 fixed minor diassembly syntax error.

4.90 25/07/96 fixed missing locals for huge C++ programs
 with lots of overlays

4.91 27/07/96 made to work with the code changes made for MIPS IV
 $ prefix allows register names in C expressions
 .s and .d suffixes to type registers to single/double fp
 expression evaluator supports alternate register names
 spacebar in reg window toggles regnames
 expr evaluator accepts alternate (r0-r31) reg names
 if they are switched on

4.92 09/09/96 now supports GTE opcodes and registernames in
 disassembly window

4.94 12/09/96 Fixed GTE disassembly errors (Thanks to Dean@Millenium)
 implemeted 2nd symbol table pass to fix-up

 forward & outside-scope strtag references (Dean again)
 New features for H2500 PCI card (see below)

4.95 16/09/96 Oops, fixed some more GTE disassembly errors (Dean again)
4.95x New Experimental Profile Window (oops, I broke callstack
 keys)
4.96x Ditto but with fixed key table for callstack
4.97x callstack unpick can now pass through fns with no scope.
4.98x 11/11/96 /j switch forces video update via BIOS (for Kanji display)

4.100 25/11/96 fixed static overlay data within functions when
 function was in a different overlay.
 (that was causing debugger to crash before)

4.102 18/12/96 fixed mouse cursor if vid mode changed in debugger

4.103 08/01/97 breakpoints now check prescence b4 removal
 modded so >4 dimension compiler bug doesn't crash debugger

4.104 16/01/97 Oops! Correct re-build of 4.103 wich suffered a minor
 version control problem

4.105 16/01/97 OK, I put the old breakpoint code back

4.106 20/01/97 New (fixed) breakpoint stuff.

4.107 20/01/97 Now accepts typedefs in typecasts.

4.109 11/04/07 Fixed file extention tabs to match last '.'
 in pathname rather than first

4.110 15/05/97 fixed disassemble-to-file which was trying to
 use long filenames even if not available

4.111 17/06/97 changed SYMB4.ASM to discard externals
 and then changed it back again :-)

4.112 02/09/97 SDevTC

4.113 10/03/98 extended label completion to include overlays

--

Copy your old DBUGPSX.EXE away somewhere safe first cos you may need
to switch back to it if you have problems.

Please delete any old debugger config files (from debuggers prior to
version 4.0) before running the new debugger (or you will get
horrible screen colours and worse).

You should copy this EXE file to DBUGPSX.EXE in your path
(wherever you normally keep DBUGPSX.EXE).

--
*** New DBUGPSX features for H2500 PCI card ***

The H2500 has PIO interrupt support. This is now supported by Target
debug stub Ver 7.03 or higher. To make proper use of this feature you
should also be using H25BIOS version 1.34 or higher and DBUGPSX ver
4.94 or higher.

What this means:

If you code runs away you will no longer see the old dreaded "Target did
not respond message". You will instead be presented with four choices:-

1) BREAK-IN This will generate a PIO interrupt to get the targets
 attention and then halt it just like if you press <esc>
 Useful if your code was stuck in an endless loop

2) INTENABLE Useful if the target is executing code without pollhost()
 This will enable PIO ints on all further comms so the
 debugger should continue despite the cpu being in an
 stuck in an endless loop with no pollhost() calls.
 You can use debugger commands as normal

3) RESET Reset the Playstation

4) ABORT Exit the debugger - return to the DOS prompt.

Note that the PIO Interrupt is not an NMI so this will only function
as described if interrupts are enabled. You will not be able to break
into code inside critical sections in this way.

New debugger key - CTRL-I
You can also turn on PIO interrupts at any time. Debugger key ctrl-I
will pop up a dialog to allow you to set the PC command interrupts
either on or off.

With PIO interrupts on - you can connect to the target even if it is
running code without any pollhost() calls. However, the scope at each
connection will not be consistent so you cannot view local variables
whilst the target is running.

With interrupts off the PC will only be able to connect to the target
when the target code executes a pollhost() call.

Current status of the PIO interrupt is reported on the status line at
the bottom of the debugger screen.

--
*** FLOATING POINT SUPPORT ***

NOTE: the DOS debugger now has limited FP expression handling.
It can evaluate an fp register value and can type a register value to
float or double. It can also accept floating point constants when
assigning new values to fp registers.

in assembler format expressions:-

register names can be use directly

e.g f0 f0.s f0.d v0+v1 v0+v1<<5 etc

are valid assembler format expressions.
Note that the .s and .d force the typing of a register. This can also
be used with non fpu registers e.g. at.s to refer to floating
point values in general registers.

in C format expressions you need to prefix the register name with a $

e.g. $f0 $f0.d $f0.d $at $at.s $at.d

are all valid C format expressions.

Note that float math like $f0+$f1 will *not* evaluate correctly ATM.

V4.29 up allow limited hardware data breakpoints (alt-B)
 for C & Assembler (see later in this file)

V4.25 up allows you to use the sizeof() function in a C expression.
This function will return the size of the result of the expression
within the brackets.

This debugger features the all new VARIABLE window and WATCH window.
In either window you can use the following keys:-

+ open up the info (e.g. structure or array etc) under cursor

- close ditto

tab change result display format of C expression under cursor

right arrow increments array index under cursor
left arrow decrements array index under cursor

Note: currently these last two only work if the array entry has not
been expanded by pressing '+'.

Also in a watch window you can use INSERT and DEL to add and remove
watch expressions. Pressing Alt-G will enter watch records for all
your global variables. Unlike VAR window, these are saved on exit.

Note that watch expressions, window lock expressions, and calculator
expressions can now be C or assembler syntax - just click on the
button on the dialog box before you enter the expression to select
which type.

If you have any questions then please call or email me.

--
Andy Beveridge andy@snsystems.co.uk

--

HARDWARE BREAK - breakpoints on data references

Alt-B brings up a dialog to set a hardware break. You must have a
compatible downloader (version 4.02) installed to do this otherwise
the debugger will give an error message.

The Hard Break dialog has two modes. It should default to the last
mode it was used in.

In ASSEMBLY LANGUAGE mode the dialog will prompt you to enter a base

address and a mask value. The mask should contain a 1 bit where you
wish to compare the address bit. e.g. to detect a reference to one
specific byte you would set a mask of -1 ($FFFFFFFF). To detect a
reference to a word mask = -2 ($FFFFFFFE to ignore bit 0), etc

Note that because this is a base + mask detection rather than a range
you can only detect a specific range if that range begins on a
suitable boundary. e.g. bytes anywhere, shorts must be on even
addresses, longwords must be on 4 byte boundaries etc

Specifically the block to protect must start at an address which is a
multiple of the smallest power of two which is greater than the
length of the range. But that's not a very convenient way to think
about it - I prefer just to visualise the address bus bits in my
head.

In C LANGUAGE MODE we hide the above from the developer and try to
present something a bit more intuitive. Since the C compiler will
always align shorts & words we do not have to worry about the above
mentioned alignment restrictions for these sizes. So in C mode we can
just accept a variable by name. No other parameters are necessary
because the debugger will then calculate the address of the variable
and assume a mask of -1, -2 or -4 depending upon the size of the
variable. Working with something other than simple variables in C
mode is a bit fiddly because internally we have to work with the
hardware restrictions mentioned above. Aligning large data items like
this is trivial in assembly language but not in C. Any suggestions for
an alternative easy to use but flexible C programmer interface to
this hardware would be very welcome.

In either mode you can turn a hard break off by clearing the flags
for read and write detection. The read/write detection flags are
simple toggles - just click on then with the mouse. I ought to have a
keyboard interface for those too. I'll fix that up soon and add a
clear button too (it would be redundant but is probably more
intuitive).

--

THE NEW MESSAGE WINDOW for PSX printf() output
--

Some developers complained that printf() output received by DBUGPSX
was too slow and had too small a buffer. To fix this I have
implemented a character based (rather than block) message stream
which is much faster and makes better use of buffer space. The new
system also allows you to override the default buffer size.

The debugger now auto-detects which message system is being used and
takes input from either.

So, to use the new turbo message system all you need to do is install
the DEXBIOS or PSYBIOS (version 1.21 or later) and then the appropriate
new message TSR.

SOURCE FILE PATHS - new with debugger version 4.69 up.
--

By typing Alt-P in a file window you can enter a search path to be
used to find source files for source-level debugging.
This path works just like a normal DOS path - entries are delimited

by semicolons.

When the debugger looks for source file it will check...

1) the full path to the file as in the symbol file. This will usually
be a fully canonicalised DOS filename as seen by the machine upon
which the project was built.

2) IF 1) above fails to find the file only then will it isolate the
filename from the end of the built path-name and then search for that
file in each of the directories specified in the source-file search
path.

e.g. if original source file at build time was MAIN.C and it was
compiled in the C:\PROJX\PSX\SRC directory then the .SYM file will
contain the entry

C:\PROJX\PSX\SRC\MAIN.C to describe the file. The debugger will first
seach for that specific file. If it cannot find it and your search
path is set to:-

 C:\;C:\TEMP;H:\COMMON\SRC

then the debugger will next look for:-

 C:\MAIN.C then C:\TEMP\MAIN.C then H:\COMMON\SRC\MAIN.C

in that order. Note that you can specify the current directory in the
search path just by adding an empty entry.

e.g. ;C:\;C:\TEMP;H:\COMMON\SRC

will cause it to look in the current directory first

or C:\;C:\TEMP;;H:\COMMON\SRC

will cause it to look in the current directory after C:\TEMP but
before looking in H:\COMMON\SRC

If all is not clear then you are welcome to call or email SN Systems
to ask for help.

AUTO OVERLAY SUPPORT - New from 4.70 up
==

This feature was added at the request of developers making very heavy
use of overlays to handle converting extremely large PC games over to
Playstation's limited 2MB RAM. It is still in development so if you
have any suggestions for improvements please let us know. In
particular, if you debug using multiple symbol files then we may need
to make a few small changes. I'm holding off to see if anyone needs
this.

Not much to say about this here as it is all automatic. To use this
feature all you need is an appropriate symbol file that contains the
new format overlay records. To make such a file you will need to be
using a recent version of the linker which also has this support.

For more details check-out the OVLEGPSX.ZIP (OVerLay Example) file on
our BBS and FTP site. This example will show you how to set-up your
.LNK linker control file and .MAK makefile to produce symbol files

with overlay information.

STACK CRAWL - New from 4.75 up
==============================

This feature can be accessed by:-

pressing < or > keys (or comma or dot) whilst in a VAR window.

Variable scope levels below the current scope (i.e. calling functions)
can be selected by pressing > repeatedly to unpick the stack one
function at a time.

A level above the default current scope (press '<' from current
var scope) displays all the function calls on the call-stack
including the parameters they were passed. You can select a scope
context from that list for variable display (move cursor and press
return).

Although this is a Var window key it will in fact temporarily change
the cpu context as seen by all windows on the screen.
The right arrow key will dereference the current displayed scope by
one level. i.e. it will change context to that of the routine which
called the one you're in. It does this by unpicking the stack frame
of the current routine - temporarily restoring registers, and
program context to that of the instruction following the call to the
current level. This can be done again and again to walk back up
through the C call-stack . At each context you can examine that
function's local variables and parameters. The register display will
also change to that context - you will see that the PC is after the
call.

Note that this only works whilst the target is stopped. If you
continue the target running (or step or trace) then the context
is first restored to the point at which you stopped the program.

If you dereference back to a point which has no scope then the
debugger will allow this but the var window will correctly display
that there is no scope for this context. All debugger windows will be
correct for the new context - if you look at a disassembly window and
go-to the PC (tab) and you will see that the PC is at the instruction
which called the C function you unpicked. If you try to derefence
again from this point you will see an error message informing you
that there is no C stack frame to unpick at this point.

You should also be aware that at the beginning of a function the
entry code may not yet have built it's stack-frame and therefore you
cannot unpick the callstack at this point. The debugger will detect
such attempts and show an error message indicating that the callstack
is incomplete. If you step into the function from this point then you
will be able to unpick the callstack again.

