Pl aySt ati on Sanpl er Di sk
Speci fication for Playable Ganme Segnents

Overvi ew

Thi s docunent sets out the guidelines for generating a playable gane
denonstration to be included in a PlayStation sanmpler. This docunent includes
a specification of the details involved in generating a denonstration, and a
techni cal checklist.

Techni cal Specification

Launcher Program

This directory contains |auncher, a sinple |aunch program based on the one
for the full denp disk. There is a nakefile for naking | aunch. exe, the source
for launch, in case you need to nake tenporary changes (tenporary, mind) and
an example cti file showing howto lay out an exanple program on the emnul at or
to be | oaded by and run by launch. Incidentally, l|aunch uses bs.lib, a
specially built subset of the full libraries. bs.lib is copyright SCEE

VWhat does | aunch do ?

Basically, it boots the machine, displays a crappy icon, and then | oads and
runs the executable at the location specified in source. Currently, this
location is sector 24. You will likely need to nodify this location to match
your situation.

If your code is all ok, and all is well, the dev systemshould printf to the
host :

<Some stuff about the bs heap, data | ocations and so on>
<Fol | owed by the stuff from Padlnit()>
<and | astly: >

Launcher: Set |oc for seek
Launcher: Program go.

At this point, launch has seeked to your programand is loading it.

I mredi ately after this, your programw |l be run. If sonething goes wong,
aunch will tinmeout and reboot the nmachine. This will probably cause repeated
reboots, but you never know. Now your game shoul d be running.

The executable will be | oaded according to the XF HDR data at the start of

the .EXE, i.e., it should have correct info in it or all will be lost; the

programis | oaded to the address specified in the t_addr field, and the bss
is cleared.

Overvi ew

The way the denp disk actually works is as follows. Wien the PlayStation
boots up at power on, the launcher programis |oaded fromCD into main RAM
and runs. The launcher is |oaded to and runs within the 32K bytes of RAM

ri ght above the PlayStation kernel's 64K of RAM (80010000 - 80018000). The

| auncher then launches the nenu program which allows the user to select and
pl ay the various ganes, and do whatever other activities are provided. Once

t he user has chosen your playable denp, your executable (.EXE) will be | oaded
from CD, the BSS segnment will be cleared, and your programw || be execut ed.
VWil e your programis running, the launcher will still be in RAM so your

program rmust_ not wite to nenory between 0x80001000 and 0x80018000. Since

you are probably used to not touching nenory inside the kernel's space, it is
anticipated that altering your code to avoid corrupting the |launcher wll
probably only require that you re-link your code with an org address 32K
byt es hi gher than before. Hopefully, losing this 32K of RAMwi || not require
a lot of changes to your ganme code. If you are pushed for RAM you nay

consi der checking the size of the stack you are using - the default is 32K
which is pretty big. The launcher keeps its own small stack inside its 32K
so you don't need to worry about corrupting its stack; your stack (in
standard configuration) is in the top 32K of nenory. Wth the |auncher

| oaded, and your program running, the main RAM | ooks |ike:

0x80000000 - 0x80010000 Pl ayStation Kernel RAM space

0x80010000 - 0x80018000 | auncher program and stack

0x80018000 - 0x80.... Your denmp code and data

0x801f 8000 - 0x801fffff Your stack (assumi ng the default size and position
assigned by |ibsn)

In order to maintain sanity, your demp nust live within its own directory on
the CD, which will contain the data files used by your denpo and any ot her
information it needs, with the exception of any DA audio, which will be a
separate track on the CD. You are encouraged to keep the nunber of files you
use to a mninmum as sone other pieces of code on the di sk may use
CdSearchFile, with its Iimtations of around 40 directories with about 30
files in each. If your application uses a nunber of files anywhere near this
l[imt, then your application will |ikely cause other applications to fail (in
whi ch event, the applications are prioritized). The |auncher runs your
program usi ng the kernel call Exec(), and so your playable denmo rmust be a
standard PlayStation .EXE file. Critically, in order for your playable denp
to accept argunents, and return control to the |auncher properly, you mnust
link your code with the provided startup.obj, a replacenment for the startup
code in libsn.lib. This start-up nbdul e does not clear the bss and set up the
heap, because if your playable denp does this, it may overwite the | auncher
The only problemis that code Iinked with startup.obj will not run in its own
right (obviously). So that you can test your executable, a sinplified version
of our application launcher is provided with this distribution

In addition to the nenory and start-up restrictions described above, your
program nmust do its initialisation, and tear down, as below. This snall
fragnment of code is essentially a harness for a programthat will return
properly to the launcher and al so | eave the various PlayStation subsystens in
a usable state.

#i f def LI NKED_STARTUP /* 1If we have |linked startup.obj */
int min(int argc, char** argv) [/* launcher will pass argc, argv to you. */
#el se
int main() /* Plain old main instead. */
#endi f /* PSX doesn't like argc, argv in a main
prog */
{

Reset Cal | back(); /* Clear all of the CD call backs. */

Cdlnit(); /* Re-initialise the CD subsystem */

Padl nit(0); /[* Initialise the pads. */

Reset Graph(0); /* Cold boot the GPU. */

Set Gr aphDebug(0) ; /* Turn GPU debugging of f. */

/* Now you can do any other startup you need to */
/* And the code fromhere on is your own */

/* Little Johnny has been killed by the giant spiders from Mars, so.. */
/* This is the end of the program now. */

/* reverse any callback initializations */

/* stop and cl ose any events */
/* failure to do these al nost reliably causes crashes in the launcher or in
ot her denobs, and will equally reliably involve another revision of your deno
*/

St opCal | back() ; /* Stop the CD call backs. */

PadsSt op() ; /* Stop pad reading. */

Reset Graph(3); /* GPU warm reset */

return (0); /* This is necessary too. */

}

The launcher will pass the standard C variables argc and argv to your
program However, argv will not be a ragged array of characters, it wll
actually just point to an array of integers; argc will be four, as your deno
wi Il be passed four pieces of information. The contents of argv will be: the
node of the deno (interactive or non-interactive), the tine-out you will use
to stop the playable denpo, the sector # for the directory containing your
app, and the track index of the ganme's first DA track. W will use ensure

that your DA tracks are stored sequentially beginning at the specified track
nunber. DA track nunmbers are 1 indexed. |If the gane does not use DA
argunents four will be zero and can be ignored. While you are free to use
what ever nmechani sm you choose to |ocate your files on the cd, the sector #
for your application's directory is provided for speed, as your file
positions can be hard coded as offsets fromthis val ue.

You can figure out the node, tinme-out, position, and DA information using the
foll owi ng code:

#defi ne | NTERACTI VE 0
#defi ne NON_|I NTERACTI VE 1
#i f def LI NKED_STARTUP /* 1f we have |inked startup.obj */
int min(int argc, int* argv) /* launcher will pass argc, argv to you.
*/
/* argv is actually an array of integers.
*/
#el se
int main() /* Plain old main instead. */
#endi f /* PSX doesn't like argc, argv on its own
*/
{
i nt node; /* Denp node */
int timeout; /* timeout in seconds. */
int first DA track; /* First DA track */
i nt sector_offset; /* location of application directory */

/* Al the usual startup stuff etc. */

#i f def LI NKED_STARTUP
node = argv[O0];

ti meout = argv[1];
first_DA track = argv[2];
sector_offset = argv[3];
#endi f

/* And on with the action */
Subm ssi on Form
(submit with denonstration)
Gane Title:
Publ i sher:
Devel oper:

Proj ect Supervisor (Name, Phone, E-mmil):

Primary Technical Contact (Name, Phone, E-mmil):

Style of Ganme (e.g. shoot-emup, racing, etc.):

Gane Function: Playable? Auto-Play for Non-Interactive? FMW only?
Controller / Peripheral Support (final gane & this demp):

Size of EXE on CD (bytes):
Size of Data on CD (bytes):

Build Instructions (alternatively, submt a .cti or .ccs file with your
dat a) :
Pl ayabl e Section Techni cal Checkli st

(MUST BE SUBM TTED W TH DEMONSTRATI ON)

Pl ease verify all of the follow ng technical details before submtting your
denonstrati on:

o] Deno |inked with sanpler. obj.

o] Denp orged at 0x80018000 or above.

o] Denp does not wite to nenmory in range 0x80010000 r 0x80018000.

o] Denp is configured for NTSC

o] Denp does startup and shutdown as specified above.

o] Deno behaves according to the specified node
(interactive/noninteractive).

o] Deno progranms using DA pay attention to argv[3] in order to determ ne
t he appropriate DA tracks.

o] Denp executable and data lives within its own directory.

o] Denpb can be quit in either node with 'select' key at any point, on any
screen.

o] Deno falls out of main in order to exit.

o] Denp termi nates at the end of a gane segnment or after the specified
ti meout.

o] Interactive demo will never sit w thout input for nore than the
specified timeout.

o] Deno renoves any cal |l backs and event handl ers before cl osing down.

o] Denp is not in the mddl e of DVA when cl osing down.

o] Deno clears the reverb buffer in SPU RAM before cl osi ng down.

On a debug station, denp is tested to indefinitely |aunch successfully
fromthe provided |l auncher, and return control to the |auncher. (This
| oop should be verified for an absolute mininumof 10 iterations in
both interactive and noninteractive nodes).

Deno does not depend on the state or contents of RAM (ot her than BSS),
data cache, VRAM SPU RAM CD sector buffer, or | cache at startup.
Stack pointer has been set properly in your .EXE header to the value
that you require (by you - use setsp programincluded wth harness

di stribution).

Printf() inserted at the start of nain() showi ng argunments received by
the launcher.

Printf() inserted at the end of main() to mark end of deno execution.

