*hkkhkkkkkkkhkhkkdkdkdhrhkxxxxx

* Z-buffering exanple *
kkhkkhkkhkhkkkkhkkhkhhkhkhkkkhkkhkhhkhkkkk*

(c) Sony Conmputer Entertainment Europe
I ntroduction

Thi s exanpl e performs Z-buffering on PSX. It consists of an assenbly program
whi ch does the actual Z-buffering, and a C programthat sets things up and
does the controls and calls the draw ng routines.

How it's done

The Z-buffering is carried out as foll ows:

Each poly is taken in turn, then for the area covered on screen by the
boundi ng rectangl e of the polygon the max and min z values are taken. If the
three vertices of the polygon have a lower z than the min z value for the
area then the polygon is drawn. If the three vertices have a larger z than
the max z then the polygon is not drawn. |If neither of these is the case the
polygon is split in tw and each of these pol ygons checked

When a polygon is split some information is added to the stack, which in
extreane cases may becone | arge, however sone reducing of the nunber added
is done. If the poly has any area it is split into two, one of which
overwites the original poly, and the other is placed on the stack. To help
reduce the anpunt of stack space used, checks are carried out to ignore any
pol ys that have no area. This neans it may be the case that one poly
overwrites the original and nothing is added to the stack.

Drawi ng the scene

The scene is nade up of a background and nodel. The whole thing runs in
hi-res 640x480 interlaced. For the sake of speed the Z-buffer itself is only
320x240, thus neaking one Z value for four pixels.

The cal cul ation of the Z-buffered polygons is separate fromthe drawing to
all ow the screen to be in interlaced node, even though the cal cul ation

may take nore than one frane (depending on the nodel, distance and Z val ues
it can take six or nore franmes of calcul ation).

The background has been split into DR_LOAD chunks to allow the odd and even
fields to be updated individually. Further to this only the lines altered
by the drawi ng of the nodel are refreshed, thus saving nore tinme.

The scene is also triple buffered allowing there to be one cal cul ated, one
bei ng drawn and the next buffer to calulated at once. Wthout this there is a
del ay when one is calculated and one is being drawmn to wait for the draw ng
to finish before the next calculation starts. Triple buffering nmeans that
there is no delay waiting for a screen to be drawn before the next |ot of

cal cul ations are started.

Al though theres a field for O position, because the nodel is drawn sem
transparent there is no need to use it. This saves a little tine as no
cal cul ation of OT values is needed before the nmodel is Z-buffered.

Limtations and alterations

Presently the code is set up to accept a nodel that is made up of only flat
textured triangles. The triangle part cannot be changed in the Z-buffer

Page 1



code, however quads can easily be split as the nodel is |oaded

In the assenbly code there are sonme offsets. The pt offsets correspond to
POLY_FT3 plus additional information for ot value and z val ues which are

stored to stack when one of the polygons is split into two. The p offsets
correspond to the POLY structure used in the C code

To change the polygon type all that is needed is to change the info in the
PCOLY structure (and therefore the p offsets in the assenbly) and the pt
offsets to match up with the new poly type. Then the information saved when
either the a poly is added to the ot, saved or |oaded fromthe stack needs to
be changed. A further conplication with Gouraud pol ygons is the subdividing
of the colour information, which can be added to the section of assenbly code
dealing with vertex subdivision.

Paraneters to the assenbly routine

The function takes 5 paraneters:

A pointer the polygons to be mani pul ated

A pointer to the Z-buffer

A pointer ot the ordering table

A pointer where the polys are to be stored for draw ng
The nunmber of polygons sent to the routine

Page 2



